## Exercise sheet 5

Exercise 1 (Stalks of hom-sheaf). Let $X=[0,1]$ with cofinite topology. Let $\underline{\mathbb{Z}}_{X}$ be the constant sheaf over $X$ with respect to $\mathbb{Z}$.
(1) Prove that $\underline{\mathbb{Z}}_{X}$ is indeed a sheaf over $X$.
(2) Let $\mathcal{F}$ be the skycraper sheaf $\mathbb{Z}$ at $0 \in X$ (see Exercise 5 in Exercise sheet 1 ). Show that $\mathcal{F}$ admits a natural $\mathbb{Z}_{X}$-module structure, i.e. $\mathcal{F}$ is a sheaf of $\mathbb{Z}_{X}$-modules.
(3) Let $U \subset X$ be a non-empty open subset of $X$. Show that we have

$$
\operatorname{Hom}_{\mathbb{Z}_{X}}\left(\left.\mathcal{F}\right|_{U},\left.\underline{\mathbb{Z}}_{X}\right|_{U}\right)=0
$$

(4) Determine the stalks of $\mathcal{F}$ and $\underline{\mathbb{Z}}_{X}$ at 0 .
(5) Determine the group $\operatorname{Hom}_{\mathbb{Z}_{X, 0}}\left(\mathcal{F}_{0}, \underline{\mathbb{Z}}_{X, 0}\right)$. In particular, prove that the natural homomorphism

$$
\mathcal{H o m}_{\mathbb{Z}_{X}}\left(\mathcal{F}, \underline{\mathbb{Z}}_{X}\right)_{0} \rightarrow \operatorname{Hom}_{\underline{\mathbb{Z}}_{X, 0}}\left(\mathcal{F}_{0}, \underline{\mathbb{Z}}_{X, 0}\right)
$$ is not surjective.

(6) Let $U=X \backslash\{0\}$ and let $\underline{\mathbb{Z}}_{U}$ be the constant sheaf over $U$ with respect to $\mathbb{Z}$. Denote by $\mathcal{G}$ the sheaf obtained by extending $\mathbb{Z}_{U}$ by zero (see Exercise 7 in Exercise sheet $1)$. Prove that $\mathcal{G}$ is a sheaf of $\mathbb{Z}_{X^{-}}$modules.
(7) Determine the stalk $\mathcal{G}_{0}$ and derive the following

$$
\operatorname{Hom}_{\underline{\underline{Z}}_{X, 0}}\left(\mathcal{G}_{0}, \mathcal{G}_{0}\right)=0
$$

(8) Let $V \subset X$ be a non-empty open subset of $X$. Show that there exists a natural inclusion

$$
\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}, \mathbb{Z}) \hookrightarrow \operatorname{Hom}\left(\left.\mathcal{G}\right|_{V},\left.\mathcal{G}\right|_{V}\right)
$$

(9) Show that there exists a natural inclusion

$$
\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}, \mathbb{Z}) \hookrightarrow \mathcal{H o m}_{\mathbb{Z}_{X}}(\mathcal{G}, \mathcal{G})_{0}
$$

In particular, derive that the natural homomorphism

$$
\mathcal{H o m}_{\underline{Z}_{X}}(\mathcal{G}, \mathcal{G})_{0} \rightarrow \operatorname{Hom}_{\underline{\underline{Z}}_{X, 0}}\left(\mathcal{G}_{0}, \mathcal{G}_{0}\right)
$$

is not injective.
Exercise 2 (Twisting sheaf $\mathcal{O}_{\mathbb{P}^{n}}(d)$ ). Let $d \in \mathbb{Z}$ be an integer. In this exercise, we aim to prove that the line bundle $\mathcal{O}_{\mathbb{P}^{n}}(d)$ corresponds exactly the $\mathbb{O}_{\mathbb{P}^{n}}$-module defined by the lifted module $S(d)$, where $S=k\left[X_{0}, \ldots, X_{n}\right]$.
(1) Let $0 \neq F \in S$ be a non-zero homogeneous element. Write down the elements in the $\operatorname{group} \Gamma(D(F), \widetilde{S(d)})$.
(2) Let $U_{i} \subset \mathbb{P}^{n}$ be the standard affine open subset $D\left(X_{i}\right) \subset \mathbb{P}^{n}$ and let $D(F) \subset U_{i}$ be a standard open subset contained in $U_{i}$. For any element $s \in \Gamma(D(F), \widetilde{S(d)})$, show that $s \cdot X_{i}^{-d}$ is a regular function on $D(F)$.
(3) For each $i$, we consider the following homomorphism of sheaves

$$
\varphi_{i}:\left.\left.\widetilde{S(d)}\right|_{U_{i}} \rightarrow \mathscr{O}_{\mathbb{P}^{n}}\right|_{U_{i}}
$$

which sends an element $s$ to $X_{i}^{-d} s$. Show that $\varphi_{i}$ is an isomorphism of $\mathscr{O}_{\mathbb{P}^{n}-\text { modules. }}$
(4) Write out the transition functions for $\mathcal{O}_{\mathbb{P}^{n}}(d)$.
(5) Show that the isomorphisms $\left\{\varphi_{i}\right\}_{0 \leq i \leq n}$ induces an isomorphism of $\widetilde{S(d)}$ and $\mathcal{O}_{\mathbb{P}^{n}}(d)$.

Exercise 3 (Ideal sheaves and conormal sheaves). Let $X$ be an algebraic variety and let $Y \subset X$ be a closed subvariety. Denote by $\mathcal{I}_{Y}$ the ideal sheaf of $Y$ and by $i$ the natural inclusion $Y \hookrightarrow X$.
(1) Assume that $X$ is affine with $A=\Gamma\left(X, \mathcal{O}_{X}\right)$. Let $I$ be the ideal of $Y$.
(a) Show that we have a natural isomorphism $\mathcal{I}_{Y} \cong \widetilde{I}$ of $\mathcal{O}_{X}$-modules.
(b) Show that we have a natural isomorphism $\mathcal{I}_{Y} / \mathcal{I}_{Y}^{2} \cong \widetilde{I / I^{2}}$ as $\mathcal{O}_{X}$-modules.
(c) Show that we have a natural isomorphism $i^{*} \mathcal{I}_{Y} \cong \mathcal{N}_{Y / X}^{*}$ of $\mathcal{O}_{Y \text {-modules. }}$
(2) Show that we have a natural isomorphism $i^{*} \mathcal{I}_{Y}=\mathcal{N}_{Y / X}^{*}$.
(3) Let $Y \subset X=\mathbb{P}^{n}$ be a hypersurface of degree $d$. Using the statement (2) above to show that $\mathcal{N}_{Y / X}^{*} \cong i^{*} \mathcal{O}_{\mathbb{P}^{n}}(-d)$.
(4) Use the following cotangent sequence to determine the canonical sheaf $\Omega_{Y}$ for $Y$ being a nonsingular hypersurface of degree $d$ in $\mathbb{P}^{n}$

$$
0 \rightarrow \mathcal{N}_{Y / X}^{*} \rightarrow i^{*} \Omega_{\mathbb{P}^{n}} \rightarrow \Omega_{Y} \rightarrow 0
$$

Exercise 4 (Cohomologies of cotangent sheaves). In this exercise, we want to compute the cohomologies of the cotangent sheaves of certain nonsingular varieties.
(1) Use the Čech cohomology to show that for a family $\left\{\mathcal{F}_{i}\right\}_{i \in I}$ of quasi-coherent sheaves on an algebraic variety $X$, we have a natural isomorphism

$$
H^{q}\left(X, \bigoplus_{i \in I} \mathcal{F}_{i}\right) \cong \bigoplus_{i \in I} H^{q}\left(X, \mathcal{F}_{i}\right)
$$

(Hint: use the fact that $X$ is quasi-compact and find a suitable finite affine open covering of $X$.)
(2) Now we want to compute the cohomologies of $\Omega_{\mathbb{P}^{n}}$ using the following Euler sequence

$$
0 \rightarrow \Omega_{\mathbb{P}^{n}} \rightarrow \mathcal{O}_{\mathbb{P}^{n}}(-1)^{\oplus n+1} \rightarrow \mathcal{O}_{\mathbb{P}^{n}} \rightarrow 0
$$

(a) Determine the cohomologies of $\mathcal{O}_{\mathbb{P}^{n}}(-1)^{\oplus n+1}$ using (1).
(b) Determine the cohomologies of $\mathcal{O}_{\mathbb{P}^{n}}$.
(c) Use the Euler sequence to derive a long exact sequence to determine the cohomologies of $\Omega_{\mathbb{P}^{n}}$.
(3) Let $i: X \hookrightarrow \mathbb{P}^{n+1}$ be a nonsingular quadric hypersurface. In the following we want to compute the cohomologies of $\Omega_{X}$. In the proof, you can use the following fact: let $j: Z \hookrightarrow Y$ be a closed variety in an algebraic variety $Y$ and let $\mathcal{F}$ be a coherent sheaf, then we have a natural isomorphism, for each $q \geq 0$,

$$
H^{q}\left(Z, j^{*} \mathcal{F}\right) \cong H^{q}\left(Y, \mathcal{F} \otimes j_{*} \mathcal{O}_{Z}\right)
$$

(a) Show that the following sequence of coherent sheaves is exact

$$
0 \rightarrow \Omega_{\mathbb{P}^{n}}(-2) \rightarrow \mathcal{O}_{\mathbb{P}^{n}}(-3)^{\oplus n+1} \rightarrow \mathcal{O}_{\mathbb{P}^{n}}(-2) \rightarrow 0
$$

Then use it to determine the cohomologies of $\Omega_{\mathbb{P}^{n}}(-2)$.
(b) Show that the following sequence of coherent sheaves is exact

$$
0 \rightarrow \Omega_{\mathbb{P}^{n}} \otimes \mathcal{I}_{X} \rightarrow \Omega_{\mathbb{P}^{n}} \rightarrow \Omega_{\mathbb{P}^{n}} \otimes i_{*} \mathcal{O}_{X} \rightarrow 0
$$

Then use it to determine the cohomologies of $i^{*} \Omega_{\mathbb{P} n}$.
(c) Use the following conormal sequence to determine the cohomologies $H^{q}\left(X, \Omega_{X}\right)$ for $q \leq n-2$

$$
0 \rightarrow \mathcal{N}_{X / \mathbb{P}^{n}}^{*} \rightarrow i^{*} \Omega_{\mathbb{P}^{n}} \rightarrow \Omega_{X} \rightarrow 0
$$

