University of Chinese Academy of Sciences Pure Mathematics Fall 2022 Algebraic Geometry I & II

Exercise sheet 5

Exercise 1 (Stalks of hom-sheaf). Let X = [0, 1] with cofinite topology. Let $\underline{\mathbb{Z}}_X$ be the constant sheaf over X with respect to \mathbb{Z} .

- (1) Prove that $\underline{\mathbb{Z}}_X$ is indeed a sheaf over X.
- (2) Let \mathcal{F} be the skycraper sheaf \mathbb{Z} at $0 \in X$ (see Exercise 5 in Exercise sheet 1). Show that \mathcal{F} admits a natural $\underline{\mathbb{Z}}_X$ -module structure, i.e. \mathcal{F} is a sheaf of $\underline{\mathbb{Z}}_X$ -modules.
- (3) Let $U \subset X$ be a non-empty open subset of X. Show that we have

$$\operatorname{Hom}_{\underline{\mathbb{Z}}_X}(\mathcal{F}|_U, \underline{\mathbb{Z}}_X|_U) = 0$$

- (4) Determine the stalks of \mathcal{F} and $\underline{\mathbb{Z}}_X$ at 0.
- (5) Determine the group $\operatorname{Hom}_{\mathbb{Z}_{X,0}}(\mathcal{F}_0, \mathbb{Z}_{X,0})$. In particular, prove that the natural homomorphism

$$\mathcal{H}om_{\underline{\mathbb{Z}}_X}(\mathcal{F},\underline{\mathbb{Z}}_X)_0 \to \operatorname{Hom}_{\underline{\mathbb{Z}}_{X,0}}(\mathcal{F}_0,\underline{\mathbb{Z}}_{X,0})$$

is not surjective.

- (6) Let $U = X \setminus \{0\}$ and let $\underline{\mathbb{Z}}_U$ be the constant sheaf over U with respect to \mathbb{Z} . Denote by \mathcal{G} the sheaf obtained by extending $\underline{\mathbb{Z}}_U$ by zero (see Exercise 7 in Exercise sheet 1). Prove that \mathcal{G} is a sheaf of $\underline{\mathbb{Z}}_X$ -modules.
- (7) Determine the stalk \mathcal{G}_0 and derive the following

$$\operatorname{Hom}_{\mathbb{Z}_{X,0}}(\mathcal{G}_0,\mathcal{G}_0)=0.$$

(8) Let $V \subset X$ be a non-empty open subset of X. Show that there exists a natural inclusion

 $\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z},\mathbb{Z}) \hookrightarrow \operatorname{Hom}(\mathcal{G}|_V,\mathcal{G}|_V).$

(9) Show that there exists a natural inclusion

$$\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z},\mathbb{Z}) \hookrightarrow \operatorname{Hom}_{\mathbb{Z}_{X}}(\mathcal{G},\mathcal{G})_{0}.$$

In particular, derive that the natural homomorphism

$$\mathcal{H}om_{\underline{\mathbb{Z}}_X}(\mathcal{G},\mathcal{G})_0 \to \operatorname{Hom}_{\underline{\mathbb{Z}}_{X,0}}(\mathcal{G}_0,\mathcal{G}_0)$$

is not injective.

Exercise 2 (Twisting sheaf $\mathcal{O}_{\mathbb{P}^n}(d)$). Let $d \in \mathbb{Z}$ be an integer. In this exercise, we aim to prove that the line bundle $\mathcal{O}_{\mathbb{P}^n}(d)$ corresponds exactly the $\mathbb{O}_{\mathbb{P}^n}$ -module defined by the lifted module S(d), where $S = k[X_0, \ldots, X_n]$.

- (1) Let $0 \neq F \in S$ be a non-zero homogeneous element. Write down the elements in the group $\Gamma(D(F), \widetilde{S(d)})$.
- (2) Let $U_i \subset \mathbb{P}^n$ be the standard affine open subset $D(X_i) \subset \mathbb{P}^n$ and let $D(F) \subset U_i$ be a standard open subset contained in U_i . For any element $s \in \Gamma(D(F), \widetilde{S(d)})$, show that $s \cdot X_i^{-d}$ is a regular function on D(F).
- (3) For each i, we consider the following homomorphism of sheaves

$$\varphi_i: S(d)|_{U_i} \to \mathscr{O}_{\mathbb{P}^n}|_{U_i}$$

which sends an element s to $X_i^{-d}s$. Show that φ_i is an isomorphism of $\mathscr{O}_{\mathbb{P}^n}$ -modules. (4) Write out the transition functions for $\mathscr{O}_{\mathbb{P}^n}(d)$.

(5) Show that the isomorphisms $\{\varphi_i\}_{0 \le i \le n}$ induces an isomorphism of $S(\overline{d})$ and $\mathcal{O}_{\mathbb{P}^n}(d)$.

Exercise 3 (Ideal sheaves and conormal sheaves). Let X be an algebraic variety and let $Y \subset X$ be a closed subvariety. Denote by \mathcal{I}_Y the ideal sheaf of Y and by *i* the natural inclusion $Y \hookrightarrow X$.

- (1) Assume that X is affine with $A = \Gamma(X, \mathcal{O}_X)$. Let I be the ideal of Y.
 - (a) Show that we have a natural isomorphism $\mathcal{I}_Y \cong \widetilde{I}$ of \mathcal{O}_X -modules.
 - (b) Show that we have a natural isomorphism $\mathcal{I}_Y/\mathcal{I}_Y^2 \cong I/I^2$ as \mathcal{O}_X -modules.
 - (c) Show that we have a natural isomorphism $i^*\mathcal{I}_Y \cong \mathcal{N}^*_{Y/X}$ of \mathcal{O}_Y -modules.
- (2) Show that we have a natural isomorphism $i^*\mathcal{I}_Y = \mathcal{N}^*_{Y/X}$.
- (3) Let $Y \subset X = \mathbb{P}^n$ be a hypersurface of degree d. Using the statement (2) above to show that $\mathcal{N}^*_{Y/X} \cong i^* \mathcal{O}_{\mathbb{P}^n}(-d)$.
- (4) Use the following cotangent sequence to determine the canonical sheaf Ω_Y for Y being a nonsingular hypersurface of degree d in \mathbb{P}^n

$$0 \to \mathcal{N}^*_{Y/X} \to i^* \Omega_{\mathbb{P}^n} \to \Omega_Y \to 0.$$

Exercise 4 (Cohomologies of cotangent sheaves). In this exercise, we want to compute the cohomologies of the cotangent sheaves of certain nonsingular varieties.

(1) Use the Čech cohomology to show that for a family $\{\mathcal{F}_i\}_{i \in I}$ of quasi-coherent sheaves on an algebraic variety X, we have a natural isomorphism

$$H^q(X, \bigoplus_{i \in I} \mathcal{F}_i) \cong \bigoplus_{i \in I} H^q(X, \mathcal{F}_i).$$

(Hint: use the fact that X is quasi-compact and find a suitable finite affine open covering of X.)

(2) Now we want to compute the cohomologies of $\Omega_{\mathbb{P}^n}$ using the following Euler sequence

$$0 \to \Omega_{\mathbb{P}^n} \to \mathcal{O}_{\mathbb{P}^n}(-1)^{\oplus n+1} \to \mathcal{O}_{\mathbb{P}^n} \to 0.$$

- (a) Determine the cohomologies of $\mathcal{O}_{\mathbb{P}^n}(-1)^{\oplus n+1}$ using (1).
- (b) Determine the cohomologies of $\mathcal{O}_{\mathbb{P}^n}$.
- (c) Use the Euler sequence to derive a long exact sequence to determine the cohomologies of $\Omega_{\mathbb{P}^n}$.
- (3) Let $i: X \hookrightarrow \mathbb{P}^{n+1}$ be a nonsingular quadric hypersurface. In the following we want to compute the cohomologies of Ω_X . In the proof, you can use the following fact: let $j: Z \hookrightarrow Y$ be a closed variety in an algebraic variety Y and let \mathcal{F} be a coherent sheaf, then we have a natural isomorphism, for each $q \ge 0$,

$$H^q(Z, j^*\mathcal{F}) \cong H^q(Y, \mathcal{F} \otimes j_*\mathcal{O}_Z).$$

(a) Show that the following sequence of coherent sheaves is exact

$$0 \to \Omega_{\mathbb{P}^n}(-2) \to \mathcal{O}_{\mathbb{P}^n}(-3)^{\oplus n+1} \to \mathcal{O}_{\mathbb{P}^n}(-2) \to 0.$$

Then use it to determine the cohomologies of $\Omega_{\mathbb{P}^n}(-2)$.

(b) Show that the following sequence of coherent sheaves is exact

$$0 \to \Omega_{\mathbb{P}^n} \otimes \mathcal{I}_X \to \Omega_{\mathbb{P}^n} \to \Omega_{\mathbb{P}^n} \otimes i_* \mathcal{O}_X \to 0.$$

Then use it to determine the cohomologies of $i^*\Omega_{\mathbb{P}^n}$.

(c) Use the following conormal sequence to determine the cohomologies $H^q(X, \Omega_X)$ for $q \leq n-2$

$$0 \to \mathcal{N}^*_{X/\mathbb{P}^n} \to i^* \Omega_{\mathbb{P}^n} \to \Omega_X \to 0.$$