University of Chinese Academy of Sciences Pure Mathematics Fall 2022 Algebraic Geometry I & II

Exercise sheet 4

Exercise 1 (Q-Cartier divisor which is not Cartier). Let $X = \{X_1X_2 = X_3^2\} \subset \mathbb{A}^3_k$ be the variety given in the course. Let D be the prime divisor in X defined by the following equation $X_1 = X_3 = 0$.

- (1) Find the singular locus of X.
- (2) Let $U = D(X_2) \subset X$ be the standard open subset of X defined as $X_2 \neq 0$. Find the generators of the ideal of $D \cap D(X_2)$ in $\Gamma(D(X_2), \mathcal{O}_X)$.
- (3) Show that the Weil divisor 2D is Cartier.
- (4) Let $Y \subset \mathbb{A}^3_k$ be the variety defined by the following equation $Y_2 = Y_3^2$. Show that Y is nonsingular.
- (5) Consider the morphism $\Phi : \mathbb{A}_k^3 \to \mathbb{A}_k^3$ which sends the point (x_1, x_2, x_3) to the point (x_1, x_1x_2, x_1x_3) . Prove that the restriction $f := \Phi|_Y$ of Φ to Y is a birational morphism from Y to X.
- (6) Let $E = f^{-1}(0)$ be the preimage of the original point in Y. Show that E is a prime divisor in Y and find the generators of the ideal of E in $\Gamma(Y, \mathcal{O}_Y)$.
- (7) Show that $f|_{Y \setminus E} : Y \setminus E \to X \setminus D$ is an isomorphism.
- (8) Calculate the pull-back $f^*(2D)$ and prove that D is not Cartier.
- (9) Let $D' \subset X$ be the prime divisor in X defined by the equation $X_2 = X_3 = 0$. Show that 2D' is Cartier.
- (10) Calculate the pull-back $f^*(2D')$ and then prove that D' is not Cartier.
- (11) Prove that D + D' is Cartier.

Exercise 2 (Restriction to open subsets). Let X be an irreducible normal variety. Let $Z \subset X$ be a proper closed subset of X and let $U = X \setminus Z$.

(1) Show that there is a surjective homomorphism $\operatorname{Cl}(X) \to \operatorname{Cl}(U)$ defined as following:

$$D = \sum n_i D_i \mapsto \sum n_i (D_i \cap U),$$

where D_i is a prime divisor and we ignore those $D_i \cap U$ which are empty.

- (2) If Z has codimension at least two in X, show that $\operatorname{Cl}(X) \to \operatorname{Cl}(U)$ is an isomorphism.
- (3) If Z is a prime divisor, prove that the following sequence is exact:

$$\mathbb{Z} \to \operatorname{Cl}(X) \to \operatorname{Cl}(U) \to 0$$

where the first map is defined by $1 \mapsto 1 \cdot Z$.

- (4) We remark that if X is an irreducible normal affine variety, then $\operatorname{Cl}(X) = 0$ if and only if $\Gamma(X, \mathcal{O}_X)$ is a UFD, see for instance [Har77, II, Proposition 6.2].
 - (a) Use the remark above to show that $Cl(\mathbb{A}_k^n) = 0$.
 - (b) Let D be the prime divisor in $\mathbb{P}^n(k)$ defined by $X_0 = 0$. Prove that D is not a principal divisor. (Hint: the regular functions on $\mathbb{P}^n(k)$ are constants.)
 - (c) Show that $\operatorname{Cl}(\mathbb{P}^{(k)}) = \operatorname{CaCl}(\mathbb{P}^{n}(k)) \cong \mathbb{Z}$ and D is a generator for it.
 - (d) Prove that $\operatorname{Pic}(\mathbb{P}^n(k)) \cong \mathbb{Z}\mathcal{O}_{\mathbb{P}^n(k)}(1)$.

Exercise 3 (Class group of affine varieties). In this exercise we aim to show that the variety X defined in Exercise 1 is \mathbb{Q} -factorial and determine its class group.

(1) Let $X = \{X_1 X_2 = X_3^2\} \subset \mathbb{A}^3_k$ be the variety as in Exercise 1 and we follow the same notations as in Exercise 1.

- $\mathbf{2}$
 - (2) Show that we have $\Gamma(U, \mathcal{O}_X) = k[X_1, X_1^{-1}, X_3]$, where $U = X \setminus D$.
 - (3) Show that U is a nonsingular irreducible affine variety and $\Gamma(U, \mathcal{O}_U)$ is a UFD.
 - (4) Use Exercise 2 to show that $\operatorname{Cl}(X) \cong \mathbb{Z}/2\mathbb{Z}$ and D is a generator for it.

(5) Prove that X is \mathbb{Q} -factorial.

Exercise 4 (Blowing-up points of affine spaces). For $n \ge 1$, let $X \subset \mathbb{A}_k^{n+1} \times \mathbb{P}^n(k)$ be the closed subvariety defined by the following equation

$$X_i Y_j = X_j Y_i, \quad 0 \le i, j \le n.$$

where (X_0, \ldots, X_n) is the coordinate of \mathbb{A}_k^{n+1} and $[Y_0 : \cdots : Y_n]$ is the homogeneous coordinate of $\mathbb{P}^n(k)$. Denote by $\pi : X \to \mathbb{A}_k^{n+1}$ the first projection. Let $0 \in \mathbb{A}_k^{n+1}$ be the original point and denote by E the preimage $\pi^{-1}(0)$.

- (1) Prove that X is irreducible and nonsingular.
- (2) Prove that $E \cong \mathbb{P}^n(k)$.
- (3) Prove that $\pi|_{X \setminus E} : X \setminus E \to \mathbb{A}_k^{n+1} \setminus \{0\}$ is an isomorphism.
- (4) For any integer $a \in \mathbb{Z}$, prove that the divisor aE is principal if and only if a = 0. (Hint: otherwise, show that aE is given by $\operatorname{div}(f \circ \pi)$, where f is a regular function on \mathbb{A}_{k}^{n+1} nonwhere vanishing).
- (5) Use Exercise 2 to determine the class group Cl(X).

The morphism $\pi: X \to \mathbb{A}_k^n$ is called the *blowing-up of* \mathbb{A}_k^n along 0.

Exercise 5 (Picard group of affine varieties). Let $Y \subset \mathbb{P}^n(k)$ be an irreducible hypersurface and let F be the generator of the homogeneous ideal of Y. Denote by d the degree of F. Let $X = \mathbb{P}^n(k) \setminus Y$.

- (1) Show that X is an irreducible nonsingular affine variety.
- (2) Use Exercise 2 to show that $\operatorname{Cl}(X) = \operatorname{CaCl}(X) \cong \mathbb{Z}/d\mathbb{Z}$ and H is a generator for it, where H is a hyperplane section; that is, H is defined by a linear form.
- (3) Show that X is not isomorphic to an affine space.

Exercise 6 (Automorphism group of projective spaces). Recall that GL(n + 1, k) is the group of all invertible $(n + 1) \times (n + 1)$ -matrices over k with the operation of matrices multiplication.

- (1) Show that for every element $A \in GL(n+1,k)$ induces a natural isomorphism of $\mathbb{P}^n(k)$.
- (2) Show that the kernel of the action of GL(n+1,k) on $\mathbb{P}^n(k)$ is the subgroup $\{cI \mid c \in k^*\}$ of central scalar matrices. Denote by PGL(n+1,k) the quotient group. We call PGL(n+1,k) the projective general linear group.
- (3) Let $g : \mathbb{P}^n(k) \to \mathbb{P}^n(k)$ be an automorphism of $\mathbb{P}^n(k)$. Show that g induces a linear isomorphism of the k-vector space $H^0(\mathbb{P}^n(k), \mathcal{O}_{\mathbb{P}^n(k)}(1))$.
- (4) An automorphism of $\mathbb{P}^{n}(k)$ is called a *projective transformation* if it is given by an element in $\mathrm{PGL}(n+1,k)$. Show that every automorphism of $\mathbb{P}^{n}(k)$ is a projective transformation.

Reference

[Har77] Robin Hartshorne. Algebraic geometry. Springer-Verlag, New York-Heidelberg, 1977. Graduate Texts in Mathematics, No. 52.