Exercise sheet 4

Exercise $1\left(\mathbb{Q}\right.$-Cartier divisor which is not Cartier). Let $X=\left\{X_{1} X_{2}=X_{3}^{2}\right\} \subset \mathbb{A}_{k}^{3}$ be the variety given in the course. Let D be the prime divisor in X defined by the following equation $X_{1}=X_{3}=0$.
(1) Find the singular locus of X.
(2) Let $U=D\left(X_{2}\right) \subset X$ be the standard open subset of X defined as $X_{2} \neq 0$. Find the generators of the ideal of $D \cap D\left(X_{2}\right)$ in $\Gamma\left(D\left(X_{2}\right), \mathcal{O}_{X}\right)$.
(3) Show that the Weil divisor $2 D$ is Cartier.
(4) Let $Y \subset \mathbb{A}_{k}^{3}$ be the variety defined by the following equation $Y_{2}=Y_{3}^{2}$. Show that Y is nonsingular.
(5) Consider the morphism $\Phi: \mathbb{A}_{k}^{3} \rightarrow \mathbb{A}_{k}^{3}$ which sends the point $\left(x_{1}, x_{2}, x_{3}\right)$ to the point $\left(x_{1}, x_{1} x_{2}, x_{1} x_{3}\right)$. Prove that the restriction $f:=\left.\Phi\right|_{Y}$ of Φ to Y is a birational morphism from Y to X.
(6) Let $E=f^{-1}(0)$ be the preimage of the original point in Y. Show that E is a prime divisor in Y and find the generators of the ideal of E in $\Gamma\left(Y, \mathcal{O}_{Y}\right)$.
(7) Show that $\left.f\right|_{Y \backslash E}: Y \backslash E \rightarrow X \backslash D$ is an isomorphism.
(8) Calculate the pull-back $f^{*}(2 D)$ and prove that D is not Cartier.
(9) Let $D^{\prime} \subset X$ be the prime divisor in X defined by the equation $X_{2}=X_{3}=0$. Show that $2 D^{\prime}$ is Cartier.
(10) Calculate the pull-back $f^{*}\left(2 D^{\prime}\right)$ and then prove that D^{\prime} is not Cartier.
(11) Prove that $D+D^{\prime}$ is Cartier.

Exercise 2 (Restriction to open subsets). Let X be an irreducible normal variety. Let $Z \subset X$ be a proper closed subset of X and let $U=X \backslash Z$.
(1) Show that there is a surjective homomorphism $\mathrm{Cl}(X) \rightarrow \mathrm{Cl}(U)$ defined as following:

$$
D=\sum n_{i} D_{i} \mapsto \sum n_{i}\left(D_{i} \cap U\right)
$$

where D_{i} is a prime divisor and we igonore those $D_{i} \cap U$ which are empty.
(2) If Z has codimenmsion at least two in X, show that $\mathrm{Cl}(X) \rightarrow \mathrm{Cl}(U)$ is an isomorphism.
(3) If Z is a prime divisor, prove that the following sequence is exact:

$$
\mathbb{Z} \rightarrow \mathrm{Cl}(X) \rightarrow \mathrm{Cl}(U) \rightarrow 0
$$

where the first map is defined by $1 \mapsto 1 \cdot Z$.
(4) We remark that if X is an irreducible normal affine variety, then $\mathrm{Cl}(X)=0$ if and only if $\Gamma\left(X, \mathcal{O}_{X}\right)$ is a UFD, see for instance Har77, II, Proposition 6.2].
(a) Use the remark above to show that $\mathrm{Cl}\left(\mathbb{A}_{k}^{n}\right)=0$.
(b) Let D be the prime divisor in $\mathbb{P}^{n}(k)$ defined by $X_{0}=0$. Prove that D is not a principal divisor. (Hint: the regular functions on $\mathbb{P}^{n}(k)$ are constants.)
(c) Show that $\left.\operatorname{Cl}\left(\mathbb{P}^{(} k\right)\right)=\operatorname{CaCl}\left(\mathbb{P}^{n}(k)\right) \cong \mathbb{Z}$ and D is a generator for it.
(d) Prove that $\operatorname{Pic}\left(\mathbb{P}^{n}(k)\right) \cong \mathbb{Z} \mathcal{O}_{\mathbb{P}^{n}(k)}(1)$.

Exercise 3 (Class group of affine varieties). In this exercise we aim to show that the variety X defined in Exercise 1 is \mathbb{Q}-factorial and determine its class group.
(1) Let $X=\left\{X_{1} X_{2}=X_{3}^{2}\right\} \subset \mathbb{A}_{k}^{3}$ be the variety as in Exercise 1 and we follow the same notations as in Exercise 1.
(2) Show that we have $\Gamma\left(U, \mathcal{O}_{X}\right)=k\left[X_{1}, X_{1}^{-1}, X_{3}\right]$, where $U=X \backslash D$.
(3) Show that U is a nonsingular irreducible affine variety and $\Gamma\left(U, \mathcal{O}_{U}\right)$ is a UFD.
(4) Use Exercise 2 to show that $\mathrm{Cl}(X) \cong \mathbb{Z} / 2 \mathbb{Z}$ and D is a generator for it.
(5) Prove that X is \mathbb{Q}-factorial.

Exercise 4 (Blowing-up points of affine spaces). For $n \geq 1$, let $X \subset \mathbb{A}_{k}^{n+1} \times \mathbb{P}^{n}(k)$ be the closed subvariety defined by the following equation

$$
X_{i} Y_{j}=X_{j} Y_{i}, \quad 0 \leq i, j \leq n
$$

where $\left(X_{0}, \ldots, X_{n}\right)$ is the coordinate of \mathbb{A}_{k}^{n+1} and $\left[Y_{0}: \cdots: Y_{n}\right]$ is the homogeneous coordinate of $\mathbb{P}^{n}(k)$. Denote by $\pi: X \rightarrow \mathbb{A}_{k}^{n+1}$ the first projection. Let $0 \in \mathbb{A}_{k}^{n+1}$ be the original point and denote by E the preimage $\pi^{-1}(0)$.
(1) Prove that X is irreducible and nonsingular.
(2) Prove that $E \cong \mathbb{P}^{n}(k)$.
(3) Prove that $\left.\pi\right|_{X \backslash E}: X \backslash E \rightarrow \mathbb{A}_{k}^{n+1} \backslash\{0\}$ is an isomorphism.
(4) For any integer $a \in \mathbb{Z}$, prove that the divisor $a E$ is principal if and only if $a=0$. (Hint: otherwise, show that $a E$ is given by $\operatorname{div}(f \circ \pi)$, where f is a regular function on \mathbb{A}_{k}^{n+1} nonwhere vanishing).
(5) Use Exercise 2 to determine the class group $\mathrm{Cl}(X)$.

The morphism $\pi: X \rightarrow \mathbb{A}_{k}^{n}$ is called the blowing-up of \mathbb{A}_{k}^{n} along 0 .
Exercise 5 (Picard group of affine varieties). Let $Y \subset \mathbb{P}^{n}(k)$ be an irreducible hypersurface and let F be the generator of the homogeneous ideal of Y. Denote by d the degree of F. Let $X=\mathbb{P}^{n}(k) \backslash Y$.
(1) Show that X is an irreducible nonsingular affine variety.
(2) Use Exercise 2 to show that $\mathrm{Cl}(X)=\operatorname{CaCl}(X) \cong \mathbb{Z} / d \mathbb{Z}$ and H is a generator for it, where H is a hyperplane section; that is, H is defined by a linear form.
(3) Show that X is not isomorphic to an affine space.

Exercise 6 (Automorphism group of projective spaces). Recall that GL $(n+1, k)$ is the group of all invertible $(n+1) \times(n+1)$-matrices over k with the operation of matrices multiplication.
(1) Show that for every element $A \in \mathrm{GL}(n+1, k)$ induces a natural isomorphism of $\mathbb{P}^{n}(k)$.
(2) Show that the kernel of the action of $\operatorname{GL}(n+1, k)$ on $\mathbb{P}^{n}(k)$ is the subgroup $\{c I \mid c \in$ $\left.k^{*}\right\}$ of central scalar matrices. Denote by $\operatorname{PGL}(n+1, k)$ the quotient group. We call $\operatorname{PGL}(n+1, k)$ the projective general linear group.
(3) Let $g: \mathbb{P}^{n}(k) \rightarrow \mathbb{P}^{n}(k)$ be an automorphism of $\mathbb{P}^{n}(k)$. Show that g induces a linear isomorphism of the k-vector space $H^{0}\left(\mathbb{P}^{n}(k), \mathcal{O}_{\mathbb{P}^{n}(k)}(1)\right)$.
(4) An automorphism of $\mathbb{P}^{n}(k)$ is called a projective transformation if it is given by an element in $\operatorname{PGL}(n+1, k)$. Show that every automorphism of $\mathbb{P}^{n}(k)$ is a projective transformation.

Reference

[Har77] Robin Hartshorne. Algebraic geometry. Springer-Verlag, New York-Heidelberg, 1977. Graduate Texts in Mathematics, No. 52.

