Exercise sheet 3

Exercise 1 (Singular points of projective hypersurfaces). Let k be an algebraically closed field of characteristic zero. Let $\mathbb{P}^{n}(k)$ be the n-dimensional projective space over k. Recall that a hypersurface of $\mathbb{P}^{n}(k)$ is a projective subvariety of $\mathbb{P}^{n}(k)$ defined by a non-zero homogeneous polynomial. Moreover, given a hypersurface X in $\mathbb{P}^{n}(k)$, then there exists a unique reduced polynomial F such that the homogenous ideal of X is generated by F. Then X is said to be defined by the polynomial F.
(1) Prove that the singular points of a hypersurface $X \subset \mathbb{P}^{n}(k)$, which is defined by a homogeneous polynomial $F\left(x_{0}, \cdots, x_{n}\right)=0$, are determined by the system of equations

$$
F\left(x_{0}, \cdots, x_{n}\right)=0 \quad \text { and } \quad \frac{\partial F}{\partial X_{i}}\left(x_{0}, \cdots, x_{n}\right)=0 \text { for } i=0, \cdots, n .
$$

(2) Prove that we have the following equality, which is known as Euler's Theorem.

$$
\operatorname{deg}(F) \cdot F=\sum_{i=0}^{n} X_{i} \frac{\partial F}{\partial X_{i}} .
$$

(3) Determine the singular points of the Steiner surface in $\mathbb{P}^{3}(k)$:

$$
x_{1}^{2} x_{2}^{2}+x_{2}^{2} x_{0}^{2}+x_{0}^{2} x_{1}^{2}-x_{0} x_{1} x_{2} x_{3}=0
$$

(4) Prove that if a hypersurface $X \subset \mathbb{P}^{n}(k)$ contains a linear subspace L of dimension $r \geq n / 2$, then X is singular. (Hint: choose the coordinate system so that L is given by $x_{r+1}=\cdots=x_{n}=0$, write out the equation of X and look for singular points contained in L.)
(5) Let $p \in \mathbb{P}^{n}(k)$ be a point and let L_{1}, \ldots, L_{n} be n linear forms in $k\left[x_{0}, \ldots, x_{n}\right]$ such that $V\left(L_{1}, \ldots, L_{n}\right)=\{p\}$. Let $\pi_{p}: \mathbb{P}^{n}(k) \longrightarrow \mathbb{P}^{n-1}(k)$ be the rational map defined as following:

$$
\left[x_{0}: \cdots: x_{n}\right] \mapsto\left[L_{1}\left(x_{0}, \ldots, x_{n}\right): \cdots: L_{n}\left(x_{0}, \ldots, x_{n}\right)\right] .
$$

Show that π_{p} is a well-defined morphism over $\mathbb{P}^{n}(k) \backslash\{p\}$.
(6) Let $p \in \mathbb{P}^{n}(k)$ be a point. A cone over p is the closure of the preimage $\pi_{p}^{-1}(Y)$ for a projective subvariety $Y \subset \mathbb{P}^{n-1}(k)$. Prove that a hypersurface of degree two with a singular point is a cone. Here the degree of hypersurface is defined as the degree of the defining polynomial. (Hint: consider the projection from a singular point).
(7) Let X be an irreducible hypersurface of degree 3. Assume that the singular locus of X contains two distinct points p and q. Prove that the line joining p and q is contained in X. Here a line means a projective subspace of dimension one in $\mathbb{P}^{n}(k)$.

Exercise 2 (Projective tangent spaces). Let $X \subset \mathbb{P}^{n}(k)$ be an irreducible projective variety and let $p \in X$ be a point. Show that the following definitions of the "projective tangent space" of X at p are equivalent:
(1) The closure in $\mathbb{P}^{n}(k)$ of the tangent space to the affine variety $X \cap U_{i}$ at p, where U_{i} is any standard affine chart containing p.
(2) The projective linear subspace corresponding to the subspace of k^{n+1}, which is the kernel of the $r \times(n+1)$ scalar matrix

$$
J=\left(\frac{\partial F_{i}}{\partial X_{j}}\left(x_{0}, \ldots, x_{n}\right)\right),
$$

where $\left\{F_{1}, \ldots, F_{r}\right\}$ is a family of homogeneous generators of the homogeneous ideal $V(X)$ and $\left(x_{0}, \cdots, x_{n}\right) \in k^{n+1}$ is an arbitrary point representing p.
(3) The projective linear subspace corresponding to the linear subspace $T_{\widetilde{p}} \widetilde{X}$ of k^{n+1}, where $\widetilde{X} \subset k^{n+1}$ is the affine cone of X and $\widetilde{p} \in \widetilde{X}$ is any point representing p.

Exercise 3 (Dual varieties). Let $X \subset \mathbb{P}^{n}(k)$ be an irreducible non-singular projective variety. Let $\check{\mathbb{P}}^{n}(k)$ be the dual space of $\mathbb{P}^{n}(k)$; that is, the projection space associated to the dual vector space $\left(k^{n+1}\right)^{*}$. Given a point $\xi \in \check{\mathbb{P}}^{n}(k)$, we denote by $H_{\xi} \subset \mathbb{P}^{n}(k)$ the hyperplane defined by ξ; that is, the $(n-1)$-dimensional projective space associated to the kernel of ξ in k^{n+1}.
(1) Consider the following set $I_{X} \subset \mathbb{P}^{n}(k) \times \check{\mathbb{P}}^{n}(k)$, which is called the conormal variety of X :

$$
I_{X}:=\left\{(x, \xi) \in \mathbb{P}^{n}(k) \times \check{\mathbb{P}}^{n}(k) \mid x \in X, \mathbb{T}_{x} X \subset H_{\xi}\right\}
$$

where $\mathbb{T}_{x} X$ is the projective tangent space of X at x. Show that I_{X} is an irreducible closed subset. The dual variety $\check{X} \subset \widetilde{\mathbb{P}}^{n}(k)$ is defined as the image of I_{X} under the second projection. Show that \check{X} is closed.
(2) Let $F\left(X_{0}, X_{1}, X_{2}\right)=0$ be the equation of an irreducible non-singular curve $X \subset \mathbb{P}^{2}$. Consider the rational map $\varphi: X \rightarrow \mathbb{P}^{2}$ given by the formulas

$$
\left[x_{0}, x_{1}, x_{2}\right] \mapsto\left[\frac{\partial F}{\partial X_{0}}\left(x_{0}, x_{1}, x_{2}\right): \frac{\partial F}{\partial X_{1}}\left(x_{0}, x_{1}, x_{2}\right): \frac{\partial F}{\partial X_{2}}\left(x_{0}, x_{1}, x_{2}\right)\right]
$$

Show that the image of φ is isomorphic to the dual variety of X.
(3) In (2), prove that $\varphi(X)$ is a point if and only if X is a line.
(4) In (2), prove that if X is a conic, then so is $\varphi(X)$.
(5) Find the dual curve of $X_{0}^{3}+X_{1}^{3}+X_{2}^{3}=0$ and determine its singular points.

