Exercise sheet 2

Exercise 1 (Maximal spectrum and Zariski topology). Let A be a commutative ring with identity element 1 . Let $X=\operatorname{MaxSpec}(A)$ be the set of all maximal ideals in A. For an ideal \mathfrak{a} of A, we define $V(\mathfrak{a})$ to be the subset of X consisting of all maximal ideals of A containing \mathfrak{a}.
(1) Show that $V(0)=X$ and $V(1)=\emptyset$.
(2) If \mathfrak{a} and \mathfrak{b} are two ideals of A, show that

$$
V(\mathfrak{a} \cap \mathfrak{b})=V(\mathfrak{a b})=V(\mathfrak{a}) \cap V(\mathfrak{b}) .
$$

(3) If $\left\{\mathfrak{a}_{i \in I}\right\}$ is a family of ideals in A, show that

$$
V\left(\sum_{i \in I} \mathfrak{a}_{i}\right)=\bigcap_{i \in I} V\left(\mathfrak{a}_{i}\right) .
$$

These properties show that all $V(\mathfrak{a})$ satisfy the axioms for closed subsets in a topological space. We call it the Zariski topology on the maximal spectrum $X=\operatorname{MaxSpec}(A)$ of A.

Let k be an algebraically closed field and let $S \subset \mathbb{A}_{k}^{n}$ be an affine algebraic set. Let $I(S)$ be the ideal of S and denote by A the coordinate ring $k\left[x_{1}, \ldots, x_{n}\right] / I(S)$.
(1) (Weak Nullstellensatz) Let $x \in S$ be a point and let $\mathfrak{m}_{x} \subset A$ be the ideal consisting of elements which vanish on x. Show that \mathfrak{m}_{x} is a maximal ideal of A and the map $\Phi: S \rightarrow X=\operatorname{MaxSpec}(A)$ by sending x to \mathfrak{m}_{x} is a bijection.
(2) Show that Φ is a homeomorphism with respect to the Zariski topologies on S and X.
(3) Give an example to show that Φ is not surjective if k is not algebraically closed, e.g. $k=\mathbb{R}$.

Exercise 2 (Twisted cubic). Let k be an algebraically closed field. We define a morphism $\varphi: \mathbb{A}_{k}^{1} \rightarrow \mathbb{A}_{k}^{3}$ by sending t to $\left(t, t^{2}, t^{3}\right)$, where t is the coordinate of \mathbb{A}_{1}^{k}. let C be the image of φ. Let (x, y, z) be the coordinates of \mathbb{A}_{k}^{3}.
(1) Show that $C=V(I)$, where I is the ideal

$$
\left(z-x y, y^{2}-x z, x^{2}-y\right)
$$

(2) Show that C is irreducible.
(3) Show that C is non-singular.
(4) Show that C is one-dimensional.

Let $\psi: \mathbb{A}_{k}^{3} \rightarrow \mathbb{A}_{k}^{2}$ be the morphism by sending (x, y, z) to (y, z) and denote by B the image of C under ψ. Let (u, v) be the coordinates of \mathbb{A}_{k}^{2}.
(1) Show that $B=V\left(u^{3}-v^{2}\right)$.
(2) Find the Zariski tangent space of B at $(0,0)$.
(3) Show that $(0,0)$ is a singular point of B.
(4) Show that B is not normal.

Exercise 3 (Basic properties of separatedness). Let Y be a separated prevariety.
(1) Any subvarieties of Y are separated.
(2) The intersection of two open affine subvarieties of Y is again an open affine subvariety.
(3) Let $f: X \rightarrow Y$ be a morphism from a prevariety X. Prove that the graph of f, $G(f)=\{(x, y) \in X \times Y \mid y=f(x)\}$ is closed in $X \times Y$.

Exercise 4 (Basic properties of completeness). Let X be a complete algebraic variety.
(1) Let $f: X \rightarrow Y$ be a morphism to an algebraic variety. Then $f(X)$ is complete.
(2) If Y is a complete algebraic variety. Then $X \times Y$ is again complete.
(3) If $Y \subsetneq X$ is a closed subvariety, then Y is complete.
(4) If X is affine, then $\operatorname{dim}(X)=0$. In particular, the affine space \mathbb{A}_{k}^{n} is not complete if $n \geq 1$.

Exercise 5 (Example of varieties which are not affine). Let k be a field and let $Y=\mathbb{A}_{k}^{2}$ be the affine plane over k with coordinates x and y. Denote by X the subvariety $\mathbb{A}_{k}^{2} \backslash\{(0,0)\}$.
(1) If $k=\mathbb{R}$, show that X is an affine variety.
(2) Show that we have a natural inclusion $\Gamma\left(Y, \mathscr{O}_{Y}\right) \subseteq \Gamma\left(X, \mathscr{O}_{X}\right)$ which induces an isomorphism of field $k(X) \cong k(Y)$.
(3) For any $G \in \Gamma\left(X, \mathscr{O}_{X}\right) \subset k(X)=k(Y)$ viewed as an element in $k(Y)$, we define

$$
I_{G}:=\left\{P \in \Gamma\left(Y, \mathscr{O}_{Y}\right) \mid P G \in \Gamma\left(Y, \mathscr{O}_{Y}\right)\right\}
$$

Show that I_{G} is an ideal of $\Gamma\left(Y, \mathscr{O}_{Y}\right)$ and $V\left(I_{G}\right) \subseteq\{(0,0)\}$.
(4) Assume that k is algebraically closed. Show that there exist two non-negative integers m and n such that $x^{m} G \in \Gamma\left(Y, \mathscr{O}_{Y}\right)$ and $y^{n} G \in \Gamma\left(Y, \mathscr{O}_{Y}\right)$.
(5) Assume that k is algebraically closed. Deduce that the inclusion $\Gamma\left(X, \mathscr{O}_{X}\right) \subset$ $\Gamma\left(Y, \mathscr{O}_{Y}\right)$ is an equality. Show that X is not an affine variety.

Exercise 6 (Quadric surfaces). Let k be a field. Consider the surface $X:=\{x y=s t\} \subset$ $\mathbb{P}^{3}(k)$ and let $Y=\mathbb{P}^{2}(k)$. We will show that X and Y are birational, but they are not isomorphic.
(1) Find two disjoint lines on X.
(2) Show that S is isomorphic to $\mathbb{P}^{1}(k) \times \mathbb{P}^{1}(k)$.
(3) Show that for any curve $C \subset Y$, the open subvariety $Y \backslash C$ is affine.
(4) Deduce that any two curves in Y intersect, and that X is not isomorphic to Y.
(5) Show that $p: X \rightarrow Y$ given by $[x: y: s: t] \mapsto[x: y: s]$ is birational.

Exercise 7 (Fermat cubic hypersurfaces). Let k be an algebraically closed field. Let $X_{n} \subset \mathbb{P}^{n+1}(k)$ be the hypersurface defined by the Fermat equation

$$
x_{0}^{3}+x_{1}^{3}+\cdots+x_{n}^{3}=0
$$

(1) Show that X_{n} is an irreducible non-singular projective variety of dimension n.
(2) Show that X_{1} is not birational to $\mathbb{P}^{1}(k)$.
(3) Show that X_{2} contains exactly 27 lines.
(4) Show that X_{2} contains two disjoint lines, and deduce that X_{2} is birational to $\mathbb{P}^{2}(k)$.

