
(1) 本考试为闭卷考试，不得使用任何书籍、笔记、资料、电子设备。
(2) 考试时间为 2023 年 01 月 04 号 13:30–16:00，150 分钟，总分为 100 分。
(3) 在所有的题目中，域 k 总是假设为特征为 0 的代数闭域。

Problem 1 (30 points). For the following prevarieties, determine whether it is a variety
or not. If your answer is no, explain your reasons. If your answer is yes, then determine
whether it is an affine variety or a projective variety and explain your reasons.

(1) (5 points) A1
k \ S, where S is a finite set.

Solution. The prevariety V := A1
k \ S is an affine variety, but not projective.

• V is a variety. Since A1
k is separated and V ⊂ A1

k is an open subset, thus V is
also separated.

• V is an affine variety. Since S ⊂ A1
k is finite, we can find a polynomial F ∈

k[X] = Γ(A1
k,OA1

k
) such that V (F ) = S, e.g. F = 1 if S = ∅ and F =

∏
(X−ai)

if S = {ai}. Then V is the standard open subset D(F ) of A1
k, which is affine.

• V is not projective. Note that A1
k is irreducible and so is V . In particular, if V

is projective, then Γ(V,OV ) = k, which is absurd as X|V is not constant.
□

(2) (5 points) P1(k) \ S, where S is a non-empty finite set.
Solution. The prevariety V = P1(k) \ S is an affine variety, but not projective.

• Since S is not empty, one can find a point s ∈ S. Set S′ = S \ {s}. Note that
the open subvariety P1(k) \ {s} of P1(k) is isomorphic to A1

k. Hence, we have
V = A1

k \ S′ and we are done by (1).
□

(3) (5 points) V (X0Y0 + X1Y1 + X2Y2) ⊂ A3
k × P2(k), where (X0, X1, X2) are the co-

ordinates of A3
k and [Y0 : Y1 : Y2] are the homogeneous coordinates of P2(k).

Solution. The prevariety V is a variety, but it is neither affine nor projective.
• V is separated. Note that A3

k × P2(k) is separated. Set Ui = D(Yi) ⊂ P2(k).
Then {A3

k × Ui}0≤i≤2 form an affine open covering of A3
k × P2(k). Moreover,

note that V ∩ (A3
k × Ui) is closed for any 0 ≤ i ≤ 2, e.g.

V ∩ (A3
k × U0) = V (X0 +X1Y1 +X2Y2),

where (X0, X1, X2) are the coordinates of A3
k and [1 : Y1 : Y2] are the coordinates

of U0
∼= U0. In particular, V is a closed subvariety of A3

k × P2(k) and hence is
separated.

• V is not affine. Consider the first projection p : V → A3
k, which is clearly

surjective. Then the fibre F0 = p−1(0) of p over the origin is exactly P2(k). In
particular, F0 is a closed projective variety of V with dimension 2. Hence, V is
not affine. Otherwise, we assume to the contrary that V is affine. Then there
exists a positive integer N such that V ⊂ AN

k . As F0 has dimension 2, it follows
that there exists a projection to coordinates π : AN

k → A1
k such that π(F0) is

dense in A1
k. However, since F0 is projective, the image π(F0) is also complete.

Since F0 is irreducible, the image π(F0) is a point, which is a contradiction as
π(F0) is dense in A1

k.
• V is not projective. Assume to the contrary that V is projective. Then p(V ) =
A3
k is complete, which is absurd.

□
Remark. The same argument as in the proof can be used to show that a quasi-affine
variety is complete if and only if it is 0-dimensional. □

(4) (5 points) V (X0Y0 + X1Y1 + X2Y2) ⊂ P2(k) × P2(k), where [X0 : X1 : X2] (resp.
[Y0 : Y1 : Y2]) are the homogeneous coordinates of the first (resp. second) factor.
Solution. The prevariety V is a projective variety, but not affine
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• V is projective. Firstly we note that P2(k) × P2(k) is projective by the Segre
embedding P2(k)× P2(k) ↪→ P8(k)

[X0 : X1 : X2][Y0 : Y1 : Y2] 7→ [X0Y0 : X0Y1 : · · · : X2Y1 : X2Y2].

On the other hand, as in (3), one can easily prove that V is closed subvariety
of P2(k)× P2(k) and hence also projective.

• V is not affine. Note that V is projective and has dimension 3 by Krull’s
Hauptidealsatz. Thus, as in (3), V can not be affine.

□
(5) (5 points) A3

k \ V (X1, X2), where (X1, X2, X3) are the coordinates of A3
k. (Hint: use

algebraic Hartogs theorem)
Solution. The prevariety V := A3

k \V (X1, X2) is a variety, but it is neither affine nor
projective.

• V is separated. Note that V is an open subset of A3
k and A3

K is separated, hence
V is also separated and is actually an open subvariety of A3

k.
• V is not affine. The natural inclusion ι : V ↪→ A3

k induces a homomorphism of
rings

ι# : Γ(A3
k,OA3

k
) → Γ(V,OV )

and it is clear that ι# is nothing else but the natural restriction map. Note
that A3

k is nonsingular and hence normal and dim(V (X1, X2)) = 1. Thus,
by the Algebraic Hartogs Theorem, the map ι# is surjective. On the other
hand, as A3

k is irreducible, the map ι# is also injective. In particular, ι# is an
isomorphism of rings. If V is affine, then ι# is an isomorphism if and only if ι
is an isomorphism. This is impossible because the inclusion ι is not surjective.

• V is not projective. Recall that the image of a complete variety is always closed.
In particular, V is closed in A3

k which is absurd since A3
k is irreducible.

□
(6) (5 points) (A2

k \ {(0, 0)})/ ∼, where (x1, x2) ∼ (x′1, x
′
2) if and only if there exists a

non-zero number λ ∈ k∗ such that x1 = λx′1 and x2 = λ−1x′2. (Hint: consider the
induced equivalence relation on each open subset D(Xi) ⊂ A2

k \ {(0, 0)} and prove
that the quotient of D(Xi) is isomorphic to A1

k)
Solution. The prevariety V is not separated and hence is not a variety.

• Note that A2
k \ {(0, 0)} = D(X1) ∪D(X2). Moreover, if (x1, x2) ∼ (x′1, x

′
2) and

(x1, x2) ∈ D(Xi), then it is obvious that we have (x′1, x
′
2) ∈ D(Xi). On each

D(Xi), consider the morphism πi : D(Xi) → A1
k, (x1, x2) 7→ x1x2. Then it is

easy to check that π induces a bijection D(Xi)/ ∼→ A1
k, [(x1, x2)] 7→ x1x2.

• According to the argument above, one can easily obtain V = (A1
k t A1

k)/ ∼,
where x ∼ y if and only if x = y 6= 0; that is, V is the line with double origin,
which is not separated: consider the natural two inclusion fi : A1

k → V . Then
the subset {z ∈ A1

k | f1(z) = f2(z)} = A1
k \ {0} is not closed in A1

k
□

Problem 2 (40 points). Consider the following Du Val singularity of type An (n ≥ 1):
Xn := V (X2

1 +X2
2 +Xn+1

3 ) ⊂ A3
k,

where (X1, X2, X3) are the coordinates of A3
k.

(1) (5 points) Prove that (0, 0, 0) is the unique singular point of Xn.
Proof. By Krull’s Hauptidealsatz, every irreducible component of Xn has dimension
2. Consider the Jacobian matrix of F = X2

1 +X2
2 +Xn+1

3 :
J(F ) = (2X1, 2X2, (n+ 1)Xn

3 ).

Clearly, J(F ) has rank = 0 only at the point (0, 0, 0), which is the only singular point
of Xn. □
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(2) (9 points) Determine the blowing-up πn : X̃n → Xn of Xn at (0, 0, 0).
Proof. Firstly we recall that the blowing-up of A3

k at (0, 0, 0) is defined as following:

Ã3
k = {(x1, x2, x3)[y1 : y2 : y3] ∈ A3

k × P2(k) |xiyj = xjyi, 1 ≤ i, j ≤ 3}.

The local affine descriptions of Ã3
k are given as following.

• The open subset U1 := Ã3
k∩(A3

k×D(Y1)) is isomorphic to A3
k given as following:

(z1 : z2 : z3) 7→ (z1 : z1z2 : z1z3)[1 : z2 : z3]

• The open subset U2 := Ã3
k∩(A3

k×D(Y2)) is isomorphic to A3
k given as following:

(t1 : t2 : t3) 7→ (t1t2 : t2 : t2t3)[t1 : 1 : t3]

• The open subset U3 := Ã3
k∩(A3

k×D(Y3)) is isomorphic to A3
k given as following:

(w1 : w2 : w3) 7→ (w1w3 : w2w3 : w3)[w1 : w2 : 1]

Denote by π : Ã3
k → A3

k the first projection. By definition, the blowing-up of Xn at
(0, 0, 0) is the strict transform of Xn in Ã3

k. The local affine description of X̃n are
given as following:

• Over U1, one can easily obtain the composition
F ◦ π = Z2

1 + Z2
1Z

2
2 + Zn+1

1 Zn+1
3 = Z2

1 (1 + Z2
2 + Zn−1

1 Zn+1
3 ).

In particular, X̃n ∩ U1 is defined by the equation
1 + Z2

2 + Zn−1
1 Zn+1

3 = 0.

• Over U2, similarly as above, X̃n ∩ U2 is defined by the equation
T 2
1 + 1 + Tn−1

2 Tn+1
3 = 0.

• Over U3, similarly as above, X̃n ∩ U2 is defined by the equation
W 2

1 +W 2
2 +Wn−1

3 = 0.

□
(3) (5 points) Prove that π−1

1 (0) is irreducible.
Proof. Denote by En = π−1

n (0). On the other hand, note that we have
En ⊂ π−1(0) = {(0, 0, 0)} × P2(k) = P2(k).

In the following, we aim to find the equation for E1 in P2(k). Firstly we work over
the affine open subset U1. Note that we have En∩U1 = X̃3

n∩{Z1 = 0}. In particular,
E1 ∩ U1 is defined by the equations

Z1 = 1 + Z2
2 + Z2

3 = 0.

It follows that E1 ⊂ π−1(0) = P2(k) is defined by the equation 1 + Y 2
2 + Y 2

3 = 0
in the affine open subset D(Y1). Similarly, E1 ∩ D(Y2) is defined by the equation
Y 2
1 +1+Y 2

3 = 0 and E1∩D(Y3) is defined by the equation Y 2
1 +Y 2

2 +1 = 0. Therefore,
it is obvious that E1 ⊂ P2(k) is defined by the equation

Y 2
1 + Y 2

2 + Y 2
3 = 0.

On the other hand, we can show that E1 is actually isomorphic to P1 and hence is
irreducible. To see this, consider the 2-nd Veronese embedding ν2 : P1 → P2, which
sends the point [x0 : x1] to [x20 : x0x1 : x21]. Then the image ν2(P1) is defined as by
the equation Y 2

1 = Y0Y2. Then the isomorphism f : P2 → P2 defined by
[y0 : y1 : y2] 7→ [y0 + iy2 : iy1 : y0 − iy2 :]

induces an isomorphism between E1 ⊂ P2 and ν2(P1) ⊂ P2. □
(4) (5 points) For n ≥ 2, prove that π−1

n (0) has two irreducible components.
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Proof. Similar to (3), for n ≥ 2, the intersection En∩D(Y1) is defined by the equation
1 + Y 2

2 = 0. The intersection En ∩D(Y2) is defined by the equation Y 2
1 + 1 = 0 and

the intersection En ∩D(Y3) is defined by the equation Y 2
1 + Y 2

2 = 0. In particular,
one can easily see that E1 ⊂ P2(k) is defined by the equation Y 2

1 + Y 2
2 = 0. On the

other hand, note that we have
Y 2
1 + Y 2

2 = (Y1 + iY2)(Y1 − iY2).

Moreover, since E′
n := V (Y1 + iY2) and E′′

n := V (Y1 − iY2) are projective lines in
P2(k), they are irreducible. Hence, En has exactly two irreducible components: E′

n

and E′′
n. □

(5) (7 points) Prove that X̃n is nonsingular if and only if n ≤ 2.
Proof. • For n = 1, then X̃1∩U1 is defined by the equation F1 := 1+Z2

2+Z2
3 = 0.

Consider the Jacobian matrix of F1:
J(F1) = (0, 2Z2, 2Z3).

By Krull’s Hauptidealsatz, X̃1 ∩ U1 has dimension 2 and is singular only at
the points (z1, z2, z3) with z2 = z3 = 0. However, one can easily see that the
points (z1, 0, 0) do not lie on X̃1 ∩U1. Hence, X̃1 ∩U1 is irreducible. The same
arguments show that both X̃1 ∩ U2 and X̃1 ∩ U3 are nonsingular and hence X̃1

is nonsingular.
• For n ≥ 2. Then X̃n∩U1 is defined by the equation F1 := 1+Z2

2+Zn−1
1 Zn+1

3 = 0.
Consider the Jacobian matrix of F1:

J(F1) = ((n− 1)Zn−1
1 Zn+1

3 , 2Z2, (n+ 1)Zn−1
1 Zn

3 ).

Let (z1, z2, z3) ∈ X̃n ∩ U1 be a point such that J(F1)(z1, z2, z3) has rank 0.
Then clearly we have z2 = 0. In particular, as F1(z1, z2, z3) = 0, it follows that
z1, z3 6= 0 and consequently J(F1) has rank 1 at (z1, z2, z3). Hence, X̃n ∩ U1 is
nonsingular. The same argument applying to X̃n ∩ U2 shows that X̃n ∩ U2 is
nonsingular.
Finally, the X̃n ∩ U3 is defined by the equation F3 = W 2

1 + W 2
2 + Wn−1

3 = 0.
Consider the Jacobian matrix:

J(F3) = (2W1, 2W2, (n− 1)Wn−2
3 ).

It follows that X̃3 ∩ U3 is nonsingular outside (0, 0, 0) and is nonsingular at
(0, 0, 0) if and only if n = 2.

□
(6) (2 points) For n ≥ 3, prove that X̃n has a unique singular point p, which is a Du Val

singularity of type An−2; that is, locally X̃n is isomorphic to Xn−2 at p.
Proof. According to the proof of (5), it is known that for n ≥ 3, the variety X̃n has
only one singular point (0, 0, 0) ∈ X̃n ∩ U3 which is defined by the equation

W 2
1 +W 2

2 +Wn−1
3 = 0.

In particular, by definition, this is a Du Val singular point of type An−2. □
(7) (5 points) Let Y := V (X2

1 − X2X3(X2 + X3)) ⊂ A3
k. Show that the blowing-up

π : Ỹ → Y of Y at (0, 0, 0) has exactly 3 singular points.
Proof. Following the same argument as in (2), one can easily derive the following
local affine description of Ỹ :

• Over U1, the affine variety Ỹ ∩ U1 is defined the following equation
G1 := 1− Z1Z

2
2Z3 − Z1Z2Z

2
3 = 0.

The Jacobian matrix of G1 is given as
J(G1) = (−Z2

2Z3 − Z2Z
2
3 , 2Z1Z2Z3 − Z1Z

2
3 ,−Z1Z

2
2 − 2Z1Z2Z3)
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Let (z1, z2, z3) ∈ Ỹ ∩ U1 be a point. Then clearly all zi are non-zero. In
particular, if J(G1)(z1, z2, z3) has rank 0 only if

z2 = −z3, 2z2 = z3, z2 = −2z3.

This implies that z2 = z3 = 0 which is impossible. Hence Ỹ ∩U1 is nonsingular.
• Over U2, the variety Ỹ ∩ U2 is defined by the equation

G2 := T 2
1 − T2T3 − T2T

2
3 = 0.

The Jacobian matrix of G2 is given as
J(G2) = (2T1,−T3 − T 2

3 ,−T2 − 2T2T3).

Then J(G1) has rank 0 at the point (t1, t2, t3) if and only if (t1, t2, t3) = (0, 0, 0)

or (0, 0,−1). Clearly that these two points are contained in Ỹ ∩ U2 and they
correspond to the points

(0, 0, 0)[0 : 1 : 0] and (0, 0, 0)[0 : 1 : −1],

in A3
k × P2(k), respectively.

• Over U3, the variety Ỹ ∩ U3 is defined by the equation
G3 := W 2

1 −W 2
2W3 −W2W3 = 0.

The Jacobian matrix of G2 is given as
J(G2) = (2W1,−2W2W3 −W3,−W 2

2 −W2).

Then J(G2) has rank 0 at the point (w1, w2, w3) if and only if (w1, w2, w3) =

(0, 0, 0) or (0,−1, 0). Clearly that these two points are contained in Ỹ ∩U3 and
they correspond to the points

(0, 0, 0)[0 : 0 : 1] and (0, 0, 0)[0 : −1 : 1],

in A3
k × P2(k), respectively.

In conclusion, the singular points of Ỹn are the following three points
(0, 0, 0)[0 : 1 : 0], (0, 0, 0)[0 : 1 : −1] = (0, 0, 0)[0 : −1 : 1] and (0, 0, 0)[0 : 0 : 1]

□
(8) (2 points) Show that Y is isomorphic to the Du Val singularity of type D4 which is

defined by the following equation in A3
k: X2

1 +X2
2X3 +X3

3 = 0.
Proof. Consider the following coordinates changes f : A3

k → A3
k

(y1 : y2 : y3) 7→
(
iy1
2
,
iy2 + y3

2
,
−iy2 + y3

2

)
which is given in the form of matrix as following:

A =



i
2 0 0

0 i
2

1
2

0 −i
2

1
2


It is easy to see that det(A) 6= 0 and hence f is an isomorphism. Moreover, a
straightforward computation shows that f−1(Y ) is defined by the equation

Y 2
1 + Y 2

2 Y3 + Y 3
3 = 0,

which is exactly the Du Val singularity of type D4. □
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Problem 3 (30 points). For two integers n ≥ 1, d ≥ 2. Let Xn,d ⊂ Pn+1(k) be the
n-dimensional Fermat hypersurface of degree d ≥ 2 defined by the following equation

Xd
0 +Xd

1 + · · ·+Xd
n +Xd

n+1 = 0,

where [X0 : X1 : · · · : Xn : Xn+1] is the homogeneous coordinates of Pn+1(k).
(1) (5 points) Prove that Xn,d is nonsingular.

Proof. It is enough to prove it for Xn,d ∩D(Xi). Without loss of generality, we may
assume that i = 0, then Xn,d ∩D(X0) ⊂ D(X0) = An+1

k is defined by the equation

F0 := 1 +Xd
1 + · · ·+Xd

n+1 = 0,

where (X1, · · · , Xn+1) are the coordinates of D(X0) = An+1
k . The the Jacobian

matrix of F1 is given as following

J(F0) = (dXd−1
1 , · · · , dXd−1

n+1).

One can easily derive that J(F0) has constant rank 1 along Xn,d ∩D(X0) and hence
Xn,d∩D(X0) is nonsingular. Similarly, one can see that Xn,d∩D(Xi) is nonsingular
for any 0 ≤ i ≤ n+ 1 and hence Xn,d is nonsingular. □

(2) (5 points) Let H ⊂ Pn+1(k) be the hyperplane defined by the equation X0 = 0.
Prove that Xn,d is linearly equivalent to dH as divisors in Pn+1(k).

Proof. Consider the non-zero rational function φ :=
Xd

0+···+Xd
n+1

Xd
0

∈ K(Pn+1)∗. Then
for each 0 ≤ i ≤ n+ 1, it is clear that we have

div(φ)|DXi
= Xn,d|D(Xi) − dH|D(Xi).

Hence, by definition Xn,d is linearly equivalent to dH. □
(3) (5 points) Let ι : Xn,d ↪→ Pn+1(k) be the natural closed immersion. Show that there

exists a natural short exact sequence as following
0 → OPn+1(k)(−d) → OPn+1(k) → ι∗OXn,d

→ 0.

Proof. Denote by I the ideal sheaf of Xn,d in Pn+1. Then we have the following
exact sequence

0 → I → OPn+1 → ι∗OXn,d
→ 0.

It is enough to show that I is isomorphic to OPn+1(−d). Note that Xn,d is a prime di-
visor in Pn+1, we have I ∼= OPn+1(−Xn,d). To see that OPn+1(−Xn,d) ∼= OPn+1(−d),
we observe that OPn+1(Xn,d) is isomorphic to OPn+1(d) since F = Xd

0 + · · · +Xd
n+1

is a non-zero element of Γ(Pn+1,OPn+1(d)) and Xn,d = div(F ). □
(4) (5 points) Deduce that Hq(Xn,d,OXn,d

(m)) = 0 for 1 ≤ q ≤ n− 1.
Proof. Since Xn,d is a closed subvariety of Pn+1, we have the following equality

Hq(Xn,d,OXn,d
(m)) = Hq(Pn+1, ι∗(OXn,d

(m))).

On the other hand, since OXn,d
(m) ∼= ι∗OPn+1(m) by definition and OPn+1(m) is

locally free, according to the projection formula, we have
ι∗(OXn,d

(m)) = ι∗ι
∗OPn+1(m) = ι∗OXn,d

⊗ OPn+1(m).

Since OPn+1(m) is locally free, tensoring OPn+1(m) with the short exact sequence in
(3) yields a short exact sequence

0 → OPn+1(m− d) → OPn+1(m) → ι∗OXn,d
⊗ OPn+1(m) → 0.

For 1 ≤ q ≤ n− 1, the short exact sequence above yields an exact sequence of vector
spaces

Hq(Pn+1,OPn+1(m)) → Hq(Pn+1, ι∗OXn,d
⊗ OPn+1(m)) → Hq+1(Pn+1,OPn+1(m− d))
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Recall that we have H i(Pn+1,OPn+1(j)) = 0 for 1 ≤ i ≤ n and j ∈ Z from the course
or using Kodaira’s Vanishing Theorem + Serre Duality. In particular, this implies
that for 1 ≤ q ≤ n− 1 and any m ∈ Z, we have

Hq(Xn,d,OXn,d
(m)) = Hq(Pn+1, ι∗OXn,d

⊗ OPn+1(m)) = 0.

This finishes the proof. □
(5) (8 points) Compute dimk H

0(Xn,d,OXn,d
(m)) and dimk H

n(Xn,d,OXn,d
(m)).

Solution. • For q = 0, as in (4), we have the following short exact sequence of
vector spaces

0 → H0(Pn+1,OPn+1(m− d)) → H0(Pn+1,Pn+1(m)) → H0(Xn,d,OXn,d
(m)) → 0.

In particular, this implies that we have
dimk H

0(Xn,d,OXn,d
(m)) = dimk H

0(Pn+1,OPn+1(m))− dimk H
0(Pn+1,OPn+1(m− d)).

Recall that for any j ∈ Z, we have H0(Pn+1,OPn+1(j)) = Sj , where Sj is the
set of homogeneous polynomials of degree j in k[X0, · · · , Xn+1]. In particular,
we have

dimk H
0(Pn+1,OPn+1(j)) =

{
0 if j < 0;(
n+j+1

j

)
=

(
n+j+1
n+1

)
if j ≥ 0.

As a consequence, we get

dimk H
0(Xn,d,OXn,d

(m)) =


0 if m < 0;(
n+m+1

m

)
if 0 ≤ m < d;(

n+m+1
m

)
−

(
n+m−d+1

m−d

)
if m ≥ d.

• For q = n, as in (4), we have the following short exact sequence of vector spaces
0 → Hn(Xn,d,OXn,d

(m)) → Hn+1(Pn+1,OPn+1(m− d)) → Hn+1(Pn+1,Pn+1(m)) → 0.

The last term follows from the Grothendieck Vanishing Theorem and the fact
that dim(Xn,d) = n. On the other hand, by Serre Duality and the fact ΩPn+1

∼=
OPn+1(−n− 2), for any j ∈ Z, we have

dimk H
n+1(Pn+1,OPn+1(j)) = dimk H

0(Pn+1,OPn+1(−n− 2− j)) = dimk S−n−2−j .

As a consequence, we obtain

dimk H
n(Xn,d,OPn+1(m)) =


0 if m > d− n− 2;(

d−m−1
d−n−m−2

)
=

(
d−m−1
n+1

)
if − n− 2 ≤ m ≤ d− n− 2;(

d−m−1
n+1

)
−
(−m−1

n+1

)
if m ≤ −n− 2.

□
(6) (2 points) Prove that if X1,d is isomorphic to X1,d′ , then d = d′.

Proof. By (5), taking m = 0, we have

dimk H
1(X1,d,OX1,d

) =

(
d− 1

2

)
=

(d− 1)(d− 2)

2
.

In particular, if X1,d is isomorphic to X1,d′ is isomorphic to X1,d′ , then we must have
dimk H

1(X1,d,OX1,d
) = dimk H

1(X1,d′ ,OX1,d′ ).

This implies immediately that d = d′. □
Remark. In the proof above, a priori we can not apply the argument to other in-
tergers m 6= 0 because OX1,d

(1) depends on the embedding of X1,d into projective
spaces, which is not canonical. Thus, if we want to apply the same argument to other
m 6= 0, we do need to show that any isomorphism f : X1,d → X1,d′ induces also an
isomorphism f∗OX1,d′ (m) ∼= OX1,d′ (m). □


