- (1) 本考试为闭卷考试,不得使用任何书籍、笔记、资料、电子设备。
- (2) 考试时间为 2023 年 01 月 04 号 13:30-16:00, 150 分钟, 总分为 100 分。
- (3) 在所有的题目中, 域 k 总是假设为特征为 0 的代数闭域。

Problem 1 (30 points). For the following prevarieties, determine whether it is a variety or not. If your answer is no, explain your reasons. If your answer is yes, then determine whether it is an affine variety or a projective variety and explain your reasons.

(1) (5 points) $\mathbb{A}_k^1 \setminus S$, where S is a finite set.

Solution. The prevariety $V := \mathbb{A}_k^1 \setminus S$ is an affine variety, but not projective.

- V is a variety. Since \mathbb{A}_k^1 is separated and $V \subset \mathbb{A}_k^1$ is an open subset, thus V is also separated.
- V is an affine variety. Since $S \subset \mathbb{A}_k^1$ is finite, we can find a polynomial $F \in k[X] = \Gamma(\mathbb{A}_k^1, \mathscr{O}_{\mathbb{A}_k^1})$ such that V(F) = S, e.g. F = 1 if $S = \emptyset$ and $F = \prod(X a_i)$ if $S = \{a_i\}$. Then V is the standard open subset D(F) of \mathbb{A}_k^1 , which is affine.
- V is not projective. Note that \mathbb{A}_k^1 is irreducible and so is V. In particular, if V is projective, then $\Gamma(V, \mathcal{O}_V) = k$, which is absurd as $X|_V$ is not constant.

(2) (5 points) $\mathbb{P}^1(k) \setminus S$, where S is a non-empty finite set.

Solution. The prevariety $V = \mathbb{P}^1(k) \setminus S$ is an affine variety, but not projective.

- Since S is not empty, one can find a point $s \in S$. Set $S' = S \setminus \{s\}$. Note that the open subvariety $\mathbb{P}^1(k) \setminus \{s\}$ of $\mathbb{P}^1(k)$ is isomorphic to \mathbb{A}^1_k . Hence, we have $V = \mathbb{A}^1_k \setminus S'$ and we are done by (1).
- (3) (5 points) $V(X_0Y_0 + X_1Y_1 + X_2Y_2) \subset \mathbb{A}^3_k \times \mathbb{P}^2(k)$, where (X_0, X_1, X_2) are the coordinates of \mathbb{A}^3_k and $[Y_0: Y_1: Y_2]$ are the homogeneous coordinates of $\mathbb{P}^2(k)$.
 - Solution. The prevariety V is a variety, but it is neither affine nor projective. • V is separated. Note that $\mathbb{A}_k^3 \times \mathbb{P}^2(k)$ is separated. Set $U_i = D(Y_i) \subset \mathbb{P}^2(k)$. Then $\{\mathbb{A}_k^3 \times U_i\}_{0 \le i \le 2}$ form an affine open covering of $\mathbb{A}_k^3 \times \mathbb{P}^2(k)$. Moreover, note that $V \cap (\mathbb{A}_k^3 \times U_i)$ is closed for any $0 \le i \le 2$, e.g.

$$V \cap (\mathbb{A}_k^3 \times U_0) = V(X_0 + X_1Y_1 + X_2Y_2),$$

where (X_0, X_1, X_2) are the coordinates of \mathbb{A}^3_k and $[1: Y_1: Y_2]$ are the coordinates of $U_0 \cong \mathbb{U}_0$. In particular, V is a closed subvariety of $\mathbb{A}^3_k \times \mathbb{P}^2(k)$ and hence is separated.

- V is not affine. Consider the first projection $p: V \to \mathbb{A}_k^3$, which is clearly surjective. Then the fibre $F_0 = p^{-1}(0)$ of p over the origin is exactly $\mathbb{P}^2(k)$. In particular, F_0 is a closed projective variety of V with dimension 2. Hence, V is not affine. Otherwise, we assume to the contrary that V is affine. Then there exists a positive integer N such that $V \subset \mathbb{A}_k^N$. As F_0 has dimension 2, it follows that there exists a projection to coordinates $\pi : \mathbb{A}_k^N \to \mathbb{A}_k^1$ such that $\pi(F_0)$ is dense in \mathbb{A}_k^1 . However, since F_0 is projective, the image $\pi(F_0)$ is also complete. Since F_0 is irreducible, the image $\pi(F_0)$ is a point, which is a contradiction as $\pi(F_0)$ is dense in \mathbb{A}_k^1 .
- V is not projective. Assume to the contrary that V is projective. Then $p(V) = \mathbb{A}_k^3$ is complete, which is absurd.

Remark. The same argument as in the proof can be used to show that a quasi-affine variety is complete if and only if it is 0-dimensional. \Box

(4) (5 points) $V(X_0Y_0 + X_1Y_1 + X_2Y_2) \subset \mathbb{P}^2(k) \times \mathbb{P}^2(k)$, where $[X_0 : X_1 : X_2]$ (resp. $[Y_0 : Y_1 : Y_2]$) are the homogeneous coordinates of the first (resp. second) factor. Solution. The prevariety V is a projective variety, but not affine • V is projective. Firstly we note that $\mathbb{P}^2(k) \times \mathbb{P}^2(k)$ is projective by the Segre embedding $\mathbb{P}^2(k) \times \mathbb{P}^2(k) \hookrightarrow \mathbb{P}^8(k)$

 $[X_0: X_1: X_2][Y_0: Y_1: Y_2] \mapsto [X_0Y_0: X_0Y_1: \dots: X_2Y_1: X_2Y_2].$

On the other hand, as in (3), one can easily prove that V is closed subvariety of $\mathbb{P}^2(k) \times \mathbb{P}^2(k)$ and hence also projective.

- V is not affine. Note that V is projective and has dimension 3 by Krull's Hauptidealsatz. Thus, as in (3), V can not be affine.
- (5) (5 points) $\mathbb{A}_k^3 \setminus V(X_1, X_2)$, where (X_1, X_2, X_3) are the coordinates of \mathbb{A}_k^3 . (Hint: use algebraic Hartogs theorem)

Solution. The prevariety $V := \mathbb{A}_k^3 \setminus V(X_1, X_2)$ is a variety, but it is neither affine nor projective.

- V is separated. Note that V is an open subset of \mathbb{A}^3_k and \mathbb{A}^3_K is separated, hence V is also separated and is actually an open subvariety of \mathbb{A}^3_k .
- V is not affine. The natural inclusion $\iota: V \hookrightarrow \mathbb{A}^3_k$ induces a homomorphism of rings

$$\iota^{\#}: \Gamma(\mathbb{A}^3_k, \mathscr{O}_{\mathbb{A}^3_k}) \to \Gamma(V, \mathscr{O}_V)$$

and it is clear that $\iota^{\#}$ is nothing else but the natural restriction map. Note that \mathbb{A}_k^3 is nonsingular and hence normal and $\dim(V(X_1, X_2)) = 1$. Thus, by the Algebraic Hartogs Theorem, the map $\iota^{\#}$ is surjective. On the other hand, as \mathbb{A}_k^3 is irreducible, the map $\iota^{\#}$ is also injective. In particular, $\iota^{\#}$ is an isomorphism of rings. If V is affine, then $\iota^{\#}$ is an isomorphism if and only if ι is an isomorphism. This is impossible because the inclusion ι is not surjective.

- V is not projective. Recall that the image of a complete variety is always closed. In particular, V is closed in \mathbb{A}^3_k which is absurd since \mathbb{A}^3_k is irreducible.

(6) (5 points) $(\mathbb{A}_k^2 \setminus \{(0,0)\}) / \sim$, where $(x_1, x_2) \sim (x'_1, x'_2)$ if and only if there exists a non-zero number $\lambda \in k^*$ such that $x_1 = \lambda x'_1$ and $x_2 = \lambda^{-1} x'_2$. (Hint: consider the induced equivalence relation on each open subset $D(X_i) \subset \mathbb{A}_k^2 \setminus \{(0,0)\}$ and prove that the quotient of $D(X_i)$ is isomorphic to \mathbb{A}_k^1)

Solution. The prevariety V is not separated and hence is not a variety.

- Note that $\mathbb{A}_k^2 \setminus \{(0,0)\} = D(X_1) \cup D(X_2)$. Moreover, if $(x_1, x_2) \sim (x'_1, x'_2)$ and $(x_1, x_2) \in D(X_i)$, then it is obvious that we have $(x'_1, x'_2) \in D(X_i)$. On each $D(X_i)$, consider the morphism $\pi_i : D(X_i) \to \mathbb{A}_k^1$, $(x_1, x_2) \mapsto x_1 x_2$. Then it is easy to check that π induces a bijection $D(X_i) / \sim \to \mathbb{A}_k^1$, $[(x_1, x_2)] \mapsto x_1 x_2$.
- According to the argument above, one can easily obtain $V = (\mathbb{A}_k^1 \sqcup \mathbb{A}_k^1) / \sim$, where $x \sim y$ if and only if $x = y \neq 0$; that is, V is the line with double origin, which is not separated: consider the natural two inclusion $f_i : \mathbb{A}_k^1 \to V$. Then the subset $\{z \in \mathbb{A}_k^1 \mid f_1(z) = f_2(z)\} = \mathbb{A}_k^1 \setminus \{0\}$ is not closed in \mathbb{A}_k^1

Problem 2 (40 points). Consider the following Du Val singularity of type A_n $(n \ge 1)$:

$$X_n := V(X_1^2 + X_2^2 + X_3^{n+1}) \subset \mathbb{A}_k^3,$$

where (X_1, X_2, X_3) are the coordinates of \mathbb{A}^3_k .

(1) (5 points) Prove that (0,0,0) is the unique singular point of X_n. *Proof.* By Krull's Hauptidealsatz, every irreducible component of X_n has dimension
2. Consider the Jacobian matrix of F = X₁² + X₂² + X₃ⁿ⁺¹:

$$J(F) = (2X_1, 2X_2, (n+1)X_3^n).$$

Clearly, J(F) has rank = 0 only at the point (0, 0, 0), which is the only singular point of X_n .

(2) (9 points) Determine the blowing-up $\pi_n : \widetilde{X}_n \to X_n$ of X_n at (0,0,0). *Proof.* Firstly we recall that the blowing-up of \mathbb{A}^3_k at (0,0,0) is defined as following:

$$\widetilde{\mathbb{A}}_{k}^{3} = \{ (x_{1}, x_{2}, x_{3}) | y_{1} : y_{2} : y_{3} \} \in \mathbb{A}_{k}^{3} \times \mathbb{P}^{2}(k) | x_{i}y_{j} = x_{j}y_{i}, 1 \le i, j \le 3 \}.$$

The local affine descriptions of $\widetilde{\mathbb{A}}_k^3$ are given as following.

• The open subset $U_1 := \widetilde{A}^3_k \cap (\mathbb{A}^3_k \times D(Y_1))$ is isomorphic to \mathbb{A}^3_k given as following:

 $(z_1:z_2:z_3)\mapsto (z_1:z_1z_2:z_1z_3)[1:z_2:z_3]$

• The open subset $U_2 := \widetilde{A}^3_k \cap (\mathbb{A}^3_k \times D(Y_2))$ is isomorphic to \mathbb{A}^3_k given as following:

 $(t_1:t_2:t_3) \mapsto (t_1t_2:t_2:t_2t_3)[t_1:1:t_3]$

• The open subset $U_3 := \widetilde{A}^3_k \cap (\mathbb{A}^3_k \times D(Y_3))$ is isomorphic to \mathbb{A}^3_k given as following:

$$(w_1: w_2: w_3) \mapsto (w_1w_3: w_2w_3: w_3)[w_1: w_2: 1]$$

Denote by $\pi : \widetilde{\mathbb{A}}_k^3 \to \mathbb{A}_k^3$ the first projection. By definition, the blowing-up of X_n at (0,0,0) is the strict transform of X_n in \widetilde{A}_k^3 . The local affine description of \widetilde{X}_n are given as following:

• Over U_1 , one can easily obtain the composition

$$F \circ \pi = Z_1^2 + Z_1^2 Z_2^2 + Z_1^{n+1} Z_3^{n+1} = Z_1^2 (1 + Z_2^2 + Z_1^{n-1} Z_3^{n+1}).$$

In particular, $\widetilde{X}_n \cap U_1$ is defined by the equation

$$1 + Z_2^2 + Z_1^{n-1} Z_3^{n+1} = 0.$$

• Over U_2 , similarly as above, $\widetilde{X}_n \cap U_2$ is defined by the equation

$$T_1^2 + 1 + T_2^{n-1}T_3^{n+1} = 0.$$

• Over U_3 , similarly as above, $\widetilde{X}_n \cap U_2$ is defined by the equation

$$W_1^2 + W_2^2 + W_3^{n-1} = 0$$

(3) (5 points) Prove that $\pi_1^{-1}(0)$ is irreducible.

Proof. Denote by $E_n = \pi_n^{-1}(0)$. On the other hand, note that we have

$$E_n \subset \pi^{-1}(0) = \{(0,0,0)\} \times \mathbb{P}^2(k) = \mathbb{P}^2(k).$$

In the following, we aim to find the equation for E_1 in $\mathbb{P}^2(k)$. Firstly we work over the affine open subset U_1 . Note that we have $E_n \cap U_1 = \widetilde{X}_n^3 \cap \{Z_1 = 0\}$. In particular, $E_1 \cap U_1$ is defined by the equations

$$Z_1 = 1 + Z_2^2 + Z_3^2 = 0.$$

It follows that $E_1 \subset \pi^{-1}(0) = \mathbb{P}^2(k)$ is defined by the equation $1 + Y_2^2 + Y_3^2 = 0$ in the affine open subset $D(Y_1)$. Similarly, $E_1 \cap D(Y_2)$ is defined by the equation $Y_1^2 + 1 + Y_3^2 = 0$ and $E_1 \cap D(Y_3)$ is defined by the equation $Y_1^2 + Y_2^2 + 1 = 0$. Therefore, it is obvious that $E_1 \subset \mathbb{P}^2(k)$ is defined by the equation

$$Y_1^2 + Y_2^2 + Y_3^2 = 0.$$

On the other hand, we can show that E_1 is actually isomorphic to \mathbb{P}^1 and hence is irreducible. To see this, consider the 2-nd Veronese embedding $\nu_2 : \mathbb{P}^1 \to \mathbb{P}^2$, which sends the point $[x_0 : x_1]$ to $[x_0^2 : x_0x_1 : x_1^2]$. Then the image $\nu_2(\mathbb{P}^1)$ is defined as by the equation $Y_1^2 = Y_0Y_2$. Then the isomorphism $f : \mathbb{P}^2 \to \mathbb{P}^2$ defined by

$$[y_0:y_1:y_2] \mapsto [y_0+iy_2:iy_1:y_0-iy_2:]$$

induces an isomorphism between $E_1 \subset \mathbb{P}^2$ and $\nu_2(\mathbb{P}^1) \subset \mathbb{P}^2$.

(4) (5 points) For $n \ge 2$, prove that $\pi_n^{-1}(0)$ has two irreducible components.

Proof. Similar to (3), for $n \ge 2$, the intersection $E_n \cap D(Y_1)$ is defined by the equation $1 + Y_2^2 = 0$. The intersection $E_n \cap D(Y_2)$ is defined by the equation $Y_1^2 + 1 = 0$ and the intersection $E_n \cap D(Y_3)$ is defined by the equation $Y_1^2 + Y_2^2 = 0$. In particular, one can easily see that $E_1 \subset \mathbb{P}^2(k)$ is defined by the equation $Y_1^2 + Y_2^2 = 0$. On the other hand, note that we have

$$Y_1^2 + Y_2^2 = (Y_1 + iY_2)(Y_1 - iY_2).$$

Moreover, since $E'_n := V(Y_1 + iY_2)$ and $E''_n := V(Y_1 - iY_2)$ are projective lines in $\mathbb{P}^2(k)$, they are irreducible. Hence, E_n has exactly two irreducible components: E'_n and E''_n .

- (5) (7 points) Prove that \widetilde{X}_n is nonsingular if and only if $n \leq 2$.
 - *Proof.* For n = 1, then $\widetilde{X}_1 \cap U_1$ is defined by the equation $F_1 := 1 + Z_2^2 + Z_3^2 = 0$. Consider the Jacobian matrix of F_1 :

$$J(F_1) = (0, 2Z_2, 2Z_3).$$

By Krull's Hauptidealsatz, $\widetilde{X}_1 \cap U_1$ has dimension 2 and is singular only at the points (z_1, z_2, z_3) with $z_2 = z_3 = 0$. However, one can easily see that the points $(z_1, 0, 0)$ do not lie on $\widetilde{X}_1 \cap U_1$. Hence, $\widetilde{X}_1 \cap U_1$ is irreducible. The same arguments show that both $\widetilde{X}_1 \cap U_2$ and $\widetilde{X}_1 \cap U_3$ are nonsingular and hence \widetilde{X}_1 is nonsingular.

• For $n \ge 2$. Then $\widetilde{X}_n \cap U_1$ is defined by the equation $F_1 := 1 + Z_2^2 + Z_1^{n-1} Z_3^{n+1} = 0$. Consider the Jacobian matrix of F_1 :

$$J(F_1) = ((n-1)Z_1^{n-1}Z_3^{n+1}, 2Z_2, (n+1)Z_1^{n-1}Z_3^n).$$

Let $(z_1, z_2, z_3) \in \widetilde{X}_n \cap U_1$ be a point such that $J(F_1)(z_1, z_2, z_3)$ has rank 0. Then clearly we have $z_2 = 0$. In particular, as $F_1(z_1, z_2, z_3) = 0$, it follows that $z_1, z_3 \neq 0$ and consequently $J(F_1)$ has rank 1 at (z_1, z_2, z_3) . Hence, $\widetilde{X}_n \cap U_1$ is nonsingular. The same argument applying to $\widetilde{X}_n \cap U_2$ shows that $\widetilde{X}_n \cap U_2$ is nonsingular.

Finally, the $\widetilde{X}_n \cap U_3$ is defined by the equation $F_3 = W_1^2 + W_2^2 + W_3^{n-1} = 0$. Consider the Jacobian matrix:

$$J(F_3) = (2W_1, 2W_2, (n-1)W_3^{n-2}).$$

It follows that $\widetilde{X}_3 \cap U_3$ is nonsingular outside (0,0,0) and is nonsingular at (0,0,0) if and only if n = 2.

(6) (2 points) For $n \ge 3$, prove that X_n has a unique singular point p, which is a Du Val singularity of type A_{n-2} ; that is, locally \tilde{X}_n is isomorphic to X_{n-2} at p.

Proof. According to the proof of (5), it is known that for $n \ge 3$, the variety \overline{X}_n has only one singular point $(0,0,0) \in \widetilde{X}_n \cap U_3$ which is defined by the equation

$$W_1^2 + W_2^2 + W_3^{n-1} = 0.$$

In particular, by definition, this is a Du Val singular point of type A_{n-2} .

(7) (5 points) Let $Y := V(X_1^2 - X_2X_3(X_2 + X_3)) \subset \mathbb{A}^3_k$. Show that the blowing-up $\pi : \widetilde{Y} \to Y$ of Y at (0,0,0) has exactly 3 singular points.

Proof. Following the same argument as in (2), one can easily derive the following local affine description of \widetilde{Y} :

• Over U_1 , the affine variety $\widetilde{Y} \cap U_1$ is defined the following equation

$$G_1 := 1 - Z_1 Z_2^2 Z_3 - Z_1 Z_2 Z_3^2 = 0.$$

The Jacobian matrix of G_1 is given as

 $J(G_1) = (-Z_2^2 Z_3 - Z_2 Z_3^2, 2Z_1 Z_2 Z_3 - Z_1 Z_3^2, -Z_1 Z_2^2 - 2Z_1 Z_2 Z_3)$

Let $(z_1, z_2, z_3) \in \widetilde{Y} \cap U_1$ be a point. Then clearly all z_i are non-zero. In particular, if $J(G_1)(z_1, z_2, z_3)$ has rank 0 only if

$$z_2 = -z_3, \qquad 2z_2 = z_3, \qquad z_2 = -2z_3.$$

This implies that $z_2 = z_3 = 0$ which is impossible. Hence $\widetilde{Y} \cap U_1$ is nonsingular. • Over U_2 , the variety $\widetilde{Y} \cap U_2$ is defined by the equation

$$G_2 := T_1^2 - T_2 T_3 - T_2 T_3^2 = 0.$$

The Jacobian matrix of G_2 is given as

$$J(G_2) = (2T_1, -T_3 - T_3^2, -T_2 - 2T_2T_3).$$

Then $J(G_1)$ has rank 0 at the point (t_1, t_2, t_3) if and only if $(t_1, t_2, t_3) = (0, 0, 0)$ or (0, 0, -1). Clearly that these two points are contained in $\widetilde{Y} \cap U_2$ and they correspond to the points

$$(0,0,0)[0:1:0]$$
 and $(0,0,0)[0:1:-1],$

in $\mathbb{A}^3_k \times \mathbb{P}^2(k)$, respectively.

• Over U_3 , the variety $\widetilde{Y} \cap U_3$ is defined by the equation

$$G_3 := W_1^2 - W_2^2 W_3 - W_2 W_3 = 0.$$

The Jacobian matrix of G_2 is given as

$$I(G_2) = (2W_1, -2W_2W_3 - W_3, -W_2^2 - W_2).$$

Then $J(G_2)$ has rank 0 at the point (w_1, w_2, w_3) if and only if $(w_1, w_2, w_3) = (0, 0, 0)$ or (0, -1, 0). Clearly that these two points are contained in $\widetilde{Y} \cap U_3$ and they correspond to the points

$$(0,0,0)[0:0:1]$$
 and $(0,0,0)[0:-1:1]$

in $\mathbb{A}^3_k \times \mathbb{P}^2(k)$, respectively.

In conclusion, the singular points of \tilde{Y}_n are the following three points (0,0,0)[0:1:0], (0,0,0)[0:1:-1] = (0,0,0)[0:-1:1] and (0,0,0)[0:0:1]

(8) (2 points) Show that Y is isomorphic to the Du Val singularity of type D_4 which is defined by the following equation in \mathbb{A}^3_k : $X_1^2 + X_2^2 X_3 + X_3^3 = 0$. *Proof.* Consider the following coordinates changes $f : \mathbb{A}^3_k \to \mathbb{A}^3_k$

$$(y_1: y_2: y_3) \mapsto \left(\frac{iy_1}{2}, \frac{iy_2 + y_3}{2}, \frac{-iy_2 + y_3}{2}\right)$$

which is given in the form of matrix as following:

$$A = \begin{pmatrix} \frac{i}{2} & 0 & 0 \\ 0 & \frac{i}{2} & \frac{1}{2} \\ 0 & -\frac{-i}{2} & \frac{1}{2} \end{pmatrix}$$

It is easy to see that $det(A) \neq 0$ and hence f is an isomorphism. Moreover, a straightforward computation shows that $f^{-1}(Y)$ is defined by the equation

$$Y_1^2 + Y_2^2 Y_3 + Y_3^3 = 0,$$

which is exactly the Du Val singularity of type D_4 .

6

Problem 3 (30 points). For two integers $n \ge 1$, $d \ge 2$. Let $X_{n,d} \subset \mathbb{P}^{n+1}(k)$ be the *n*-dimensional Fermat hypersurface of degree $d \ge 2$ defined by the following equation

$$X_0^d + X_1^d + \dots + X_n^d + X_{n+1}^d = 0,$$

where $[X_0: X_1: \cdots: X_n: X_{n+1}]$ is the homogeneous coordinates of $\mathbb{P}^{n+1}(k)$.

(1) (5 points) Prove that $X_{n,d}$ is nonsingular.

Proof. It is enough to prove it for $X_{n,d} \cap D(X_i)$. Without loss of generality, we may assume that i = 0, then $X_{n,d} \cap D(X_0) \subset D(X_0) = \mathbb{A}_k^{n+1}$ is defined by the equation

$$F_0 := 1 + X_1^d + \dots + X_{n+1}^d = 0,$$

where (X_1, \dots, X_{n+1}) are the coordinates of $D(X_0) = \mathbb{A}_k^{n+1}$. The the Jacobian matrix of F_1 is given as following

$$J(F_0) = (dX_1^{d-1}, \cdots, dX_{n+1}^{d-1}).$$

One can easily derive that $J(F_0)$ has constant rank 1 along $X_{n,d} \cap D(X_0)$ and hence $X_{n,d} \cap D(X_0)$ is nonsingular. Similarly, one can see that $X_{n,d} \cap D(X_i)$ is nonsingular for any $0 \le i \le n+1$ and hence $X_{n,d}$ is nonsingular. \Box

(2) (5 points) Let $H \subset \mathbb{P}^{n+1}(k)$ be the hyperplane defined by the equation $X_0 = 0$. Prove that $X_{n,d}$ is linearly equivalent to dH as divisors in $\mathbb{P}^{n+1}(k)$.

Proof. Consider the non-zero rational function $\phi := \frac{X_0^d + \dots + X_{n+1}^d}{X_0^d} \in K(\mathbb{P}^{n+1})^*$. Then for each $0 \le i \le n+1$, it is clear that we have

$$\operatorname{div}(\phi)|_{D_{X_i}} = X_{n,d}|_{D(X_i)} - dH|_{D(X_i)}.$$

Hence, by definition $X_{n,d}$ is linearly equivalent to dH.

(3) (5 points) Let $\iota: X_{n,d} \hookrightarrow \mathbb{P}^{n+1}(k)$ be the natural closed immersion. Show that there exists a natural short exact sequence as following

$$0 \to \mathscr{O}_{\mathbb{P}^{n+1}(k)}(-d) \to \mathscr{O}_{\mathbb{P}^{n+1}(k)} \to \iota_*\mathscr{O}_{X_{n,d}} \to 0$$

Proof. Denote by \mathscr{I} the ideal sheaf of $X_{n,d}$ in \mathbb{P}^{n+1} . Then we have the following exact sequence

$$0 \to \mathscr{I} \to \mathscr{O}_{\mathbb{P}^{n+1}} \to \iota_* \mathscr{O}_{X_{n,d}} \to 0.$$

It is enough to show that \mathscr{I} is isomorphic to $\mathscr{O}_{\mathbb{P}^{n+1}}(-d)$. Note that $X_{n,d}$ is a prime divisor in \mathbb{P}^{n+1} , we have $\mathscr{I} \cong \mathscr{O}_{\mathbb{P}^{n+1}}(-X_{n,d})$. To see that $\mathscr{O}_{\mathbb{P}^{n+1}}(-X_{n,d}) \cong \mathscr{O}_{\mathbb{P}^{n+1}}(-d)$, we observe that $\mathscr{O}_{\mathbb{P}^{n+1}}(X_{n,d})$ is isomorphic to $\mathscr{O}_{\mathbb{P}^{n+1}}(d)$ since $F = X_0^d + \cdots + X_{n+1}^d$ is a non-zero element of $\Gamma(\mathbb{P}^{n+1}, \mathscr{O}_{\mathbb{P}^{n+1}}(d))$ and $X_{n,d} = \operatorname{div}(F)$. \Box

(4) (5 points) Deduce that $H^q(X_{n,d}, \mathscr{O}_{X_{n,d}}(m)) = 0$ for $1 \le q \le n-1$.

Proof. Since $X_{n,d}$ is a closed subvariety of \mathbb{P}^{n+1} , we have the following equality

$$H^q(X_{n,d}, \mathscr{O}_{X_{n,d}}(m)) = H^q(\mathbb{P}^{n+1}, \iota_*(\mathscr{O}_{X_{n,d}}(m))).$$

On the other hand, since $\mathscr{O}_{X_{n,d}}(m) \cong \iota^* \mathscr{O}_{\mathbb{P}^{n+1}}(m)$ by definition and $\mathscr{O}_{\mathbb{P}^{n+1}(m)}$ is locally free, according to the projection formula, we have

$$\iota_*(\mathscr{O}_{X_{n,d}}(m)) = \iota_*\iota^*\mathscr{O}_{\mathbb{P}^{n+1}}(m) = \iota_*\mathscr{O}_{X_{n,d}} \otimes \mathscr{O}_{\mathbb{P}^{n+1}}(m).$$

Since $\mathscr{O}_{\mathbb{P}^{n+1}}(m)$ is locally free, tensoring $\mathscr{O}_{\mathbb{P}^{n+1}}(m)$ with the short exact sequence in (3) yields a short exact sequence

$$0 \to \mathscr{O}_{\mathbb{P}^{n+1}}(m-d) \to \mathscr{O}_{\mathbb{P}^{n+1}}(m) \to \iota_*\mathscr{O}_{X_{n,d}} \otimes \mathscr{O}_{\mathbb{P}^{n+1}}(m) \to 0.$$

For $1 \le q \le n-1$, the short exact sequence above yields an exact sequence of vector spaces

$$H^{q}(\mathbb{P}^{n+1}, \mathscr{O}_{\mathbb{P}^{n+1}}(m)) \to H^{q}(\mathbb{P}^{n+1}, \iota_{*}\mathscr{O}_{X_{n,d}} \otimes \mathscr{O}_{\mathbb{P}^{n+1}}(m)) \to H^{q+1}(\mathbb{P}^{n+1}, \mathscr{O}_{\mathbb{P}^{n+1}}(m-d))$$

Recall that we have $H^i(\mathbb{P}^{n+1}, \mathscr{O}_{\mathbb{P}^{n+1}}(j)) = 0$ for $1 \leq i \leq n$ and $j \in \mathbb{Z}$ from the course or using Kodaira's Vanishing Theorem + Serre Duality. In particular, this implies that for $1 \leq q \leq n-1$ and any $m \in \mathbb{Z}$, we have

$$H^{q}(X_{n,d}, \mathscr{O}_{X_{n,d}}(m)) = H^{q}(\mathbb{P}^{n+1}, \iota_{*}\mathscr{O}_{X_{n,d}} \otimes \mathscr{O}_{\mathbb{P}^{n+1}}(m)) = 0$$

This finishes the proof.

- (5) (8 points) Compute $\dim_k H^0(X_{n,d}, \mathscr{O}_{X_{n,d}}(m))$ and $\dim_k H^n(X_{n,d}, \mathscr{O}_{X_{n,d}}(m))$.
 - Solution. For q = 0, as in (4), we have the following short exact sequence of vector spaces

$$0 \to H^0(\mathbb{P}^{n+1}, \mathscr{O}_{\mathbb{P}^{n+1}}(m-d)) \to H^0(\mathbb{P}^{n+1}, \mathbb{P}^{n+1}(m)) \to H^0(X_{n,d}, \mathscr{O}_{X_{n,d}}(m)) \to 0.$$

In particular, this implies that we have

$$\dim_k H^0(X_{n,d}, \mathscr{O}_{X_{n,d}}(m)) = \dim_k H^0(\mathbb{P}^{n+1}, \mathscr{O}_{\mathbb{P}^{n+1}}(m)) - \dim_k H^0(\mathbb{P}^{n+1}, \mathscr{O}_{\mathbb{P}^{n+1}}(m-d)).$$

Recall that for any $j \in \mathbb{Z}$, we have $H^0(\mathbb{P}^{n+1}, \mathscr{O}_{\mathbb{P}^{n+1}}(j)) = S_j$, where S_j is the set of homogeneous polynomials of degree j in $k[X_0, \dots, X_{n+1}]$. In particular, we have

$$\dim_k H^0(\mathbb{P}^{n+1}, \mathscr{O}_{\mathbb{P}^{n+1}}(j)) = \begin{cases} 0 & \text{if } j < 0; \\ \binom{n+j+1}{j} = \binom{n+j+1}{n+1} & \text{if } j \ge 0. \end{cases}$$

As a consequence, we get

$$\dim_k H^0(X_{n,d}, \mathscr{O}_{X_{n,d}}(m)) = \begin{cases} 0 & \text{if } m < 0; \\ \binom{n+m+1}{m} & \text{if } 0 \le m < d; \\ \binom{n+m+1}{m} - \binom{n+m-d+1}{m-d} & \text{if } m \ge d. \end{cases}$$

• For q = n, as in (4), we have the following short exact sequence of vector spaces

 $0 \to H^{n}(X_{n,d}, \mathscr{O}_{X_{n,d}}(m)) \to H^{n+1}(\mathbb{P}^{n+1}, \mathscr{O}_{\mathbb{P}^{n+1}}(m-d)) \to H^{n+1}(\mathbb{P}^{n+1}, \mathbb{P}^{n+1}(m)) \to 0.$ The last term follows from the Grothendieck Vanishing Theorem and the fact that $\dim(X_{n,d}) = n$. On the other hand, by Serre Duality and the fact $\Omega_{\mathbb{P}^{n+1}} \cong \mathscr{O}_{\mathbb{P}^{n+1}}(-n-2)$, for any $j \in \mathbb{Z}$, we have

$$\dim_k H^{n+1}(\mathbb{P}^{n+1}, \mathscr{O}_{\mathbb{P}^{n+1}}(j)) = \dim_k H^0(\mathbb{P}^{n+1}, \mathscr{O}_{\mathbb{P}^{n+1}}(-n-2-j)) = \dim_k S_{-n-2-j}.$$

As a consequence, we obtain

$$\dim_k H^n(X_{n,d}, \mathscr{O}_{\mathbb{P}^{n+1}}(m)) = \begin{cases} 0 & \text{if } m > d-n-2; \\ \binom{d-m-1}{d-n-m-2} = \binom{d-m-1}{n+1} & \text{if } -n-2 \le m \le d-n-2; \\ \binom{d-m-1}{n+1} - \binom{-m-1}{n+1} & \text{if } m \le -n-2. \end{cases}$$

(6) (2 points) Prove that if $X_{1,d}$ is isomorphic to $X_{1,d'}$, then d = d'. *Proof.* By (5), taking m = 0, we have

$$\dim_k H^1(X_{1,d}, \mathscr{O}_{X_{1,d}}) = \binom{d-1}{2} = \frac{(d-1)(d-2)}{2}.$$

In particular, if $X_{1,d}$ is isomorphic to $X_{1,d'}$ is isomorphic to $X_{1,d'}$, then we must have

$$\dim_k H^1(X_{1,d}, \mathscr{O}_{X_{1,d}}) = \dim_k H^1(X_{1,d'}, \mathscr{O}_{X_{1,d'}}).$$

mediately that $d = d'$.

This implies immediately that d = d'.

Remark. In the proof above, a priori we can not apply the argument to other intergers $m \neq 0$ because $\mathscr{O}_{X_{1,d}}(1)$ depends on the embedding of $X_{1,d}$ into projective spaces, which is not canonical. Thus, if we want to apply the same argument to other $m \neq 0$, we do need to show that any isomorphism $f: X_{1,d} \to X_{1,d'}$ induces also an isomorphism $f^* \mathscr{O}_{X_{1,d'}}(m) \cong \mathscr{O}_{X_{1,d'}}(m)$.