（1）本考试为闭卷考试，不得使用任何书籍，笔记，资料，电子设备。
（2）考试时间为 2023 年 01 月 04 号 13：30－16：00， 150 分钟，总分为 100 分。
（3）在所有的题目中，域 k 总是假设为特征为 0 的代数闭域。
Problem 1 （ 30 points）．For the following prevarieties，determine whether it is a variety or not．If your answer is no，explain your reasons．If your answer is yes，then determine whether it is an affine variety or a projective variety and explain your reasons．
（1）（5 points） $\mathbb{A}_{k}^{1} \backslash S$ ，where S is a finite set．
Solution．The prevariety $V:=\mathbb{A}_{k}^{1} \backslash S$ is an affine variety，but not projective．
－V is a variety．Since \mathbb{A}_{k}^{1} is separated and $V \subset \mathbb{A}_{k}^{1}$ is an open subset，thus V is also separated．
－V is an affine variety．Since $S \subset \mathbb{A}_{k}^{1}$ is finite，we can find a polynomial $F \in$ $k[X]=\Gamma\left(\mathbb{A}_{k}^{1}, \mathscr{O}_{\mathbb{A}_{k}^{1}}\right)$ such that $V(F)=S$ ，e．g．$F=1$ if $S=\emptyset$ and $F=\Pi\left(X-a_{i}\right)$ if $S=\left\{a_{i}\right\}$ ．Then V is the standard open subset $D(F)$ of \mathbb{A}_{k}^{1} ，which is affine．
－V is not projective．Note that \mathbb{A}_{k}^{1} is irreducible and so is V ．In particular，if V is projective，then $\Gamma\left(V, \mathscr{O}_{V}\right)=k$ ，which is absurd as $\left.X\right|_{V}$ is not constant．
（2）（5 points） $\mathbb{P}^{1}(k) \backslash S$ ，where S is a non－empty finite set．
Solution．The prevariety $V=\mathbb{P}^{1}(k) \backslash S$ is an affine variety，but not projective．
－Since S is not empty，one can find a point $s \in S$ ．Set $S^{\prime}=S \backslash\{s\}$ ．Note that the open subvariety $\mathbb{P}^{1}(k) \backslash\{s\}$ of $\mathbb{P}^{1}(k)$ is isomorphic to \mathbb{A}_{k}^{1} ．Hence，we have $V=\mathbb{A}_{k}^{1} \backslash S^{\prime}$ and we are done by（1）．
（3）（5 points）$V\left(X_{0} Y_{0}+X_{1} Y_{1}+X_{2} Y_{2}\right) \subset \mathbb{A}_{k}^{3} \times \mathbb{P}^{2}(k)$ ，where $\left(X_{0}, X_{1}, X_{2}\right)$ are the co－ ordinates of \mathbb{A}_{k}^{3} and $\left[Y_{0}: Y_{1}: Y_{2}\right]$ are the homogeneous coordinates of $\mathbb{P}^{2}(k)$ ．
Solution．The prevariety V is a variety，but it is neither affine nor projective．
－V is separated．Note that $\mathbb{A}_{k}^{3} \times \mathbb{P}^{2}(k)$ is separated．Set $U_{i}=D\left(Y_{i}\right) \subset \mathbb{P}^{2}(k)$ ． Then $\left\{\mathbb{A}_{k}^{3} \times U_{i}\right\}_{0 \leq i \leq 2}$ form an affine open covering of $\mathbb{A}_{k}^{3} \times \mathbb{P}^{2}(k)$ ．Moreover， note that $V \cap\left(\mathbb{A}_{k}^{3} \times U_{i}\right)$ is closed for any $0 \leq i \leq 2$ ，e．g．

$$
V \cap\left(\mathbb{A}_{k}^{3} \times U_{0}\right)=V\left(X_{0}+X_{1} Y_{1}+X_{2} Y_{2}\right),
$$

where $\left(X_{0}, X_{1}, X_{2}\right)$ are the coordinates of \mathbb{A}_{k}^{3} and $\left[1: Y_{1}: Y_{2}\right]$ are the coordinates of $U_{0} \cong \mathbb{U}_{0}$ ．In particular，V is a closed subvariety of $\mathbb{A}_{k}^{3} \times \mathbb{P}^{2}(k)$ and hence is separated．
－V is not affine．Consider the first projection $p: V \rightarrow \mathbb{A}_{k}^{3}$ ，which is clearly surjective．Then the fibre $F_{0}=p^{-1}(0)$ of p over the origin is exactly $\mathbb{P}^{2}(k)$ ．In particular，F_{0} is a closed projective variety of V with dimension 2 ．Hence，V is not affine．Otherwise，we assume to the contrary that V is affine．Then there exists a positive integer N such that $V \subset \mathbb{A}_{k}^{N}$ ．As F_{0} has dimension 2 ，it follows that there exists a projection to coordinates $\pi: \mathbb{A}_{k}^{N} \rightarrow \mathbb{A}_{k}^{1}$ such that $\pi\left(F_{0}\right)$ is dense in \mathbb{A}_{k}^{1} ．However，since F_{0} is projective，the image $\pi\left(F_{0}\right)$ is also complete． Since F_{0} is irreducible，the image $\pi\left(F_{0}\right)$ is a point，which is a contradiction as $\pi\left(F_{0}\right)$ is dense in \mathbb{A}_{k}^{1} ．
－V is not projective．Assume to the contrary that V is projective．Then $p(V)=$ \mathbb{A}_{k}^{3} is complete，which is absurd．

Remark．The same argument as in the proof can be used to show that a quasi－affine variety is complete if and only if it is 0 －dimensional．
（4）（5 points）$V\left(X_{0} Y_{0}+X_{1} Y_{1}+X_{2} Y_{2}\right) \subset \mathbb{P}^{2}(k) \times \mathbb{P}^{2}(k)$ ，where $\left[X_{0}: X_{1}: X_{2}\right.$ ］（resp． ［ $\left.Y_{0}: Y_{1}: Y_{2}\right]$ ）are the homogeneous coordinates of the first（resp．second）factor．
Solution．The prevariety V is a projective variety，but not affine

- V is projective. Firstly we note that $\mathbb{P}^{2}(k) \times \mathbb{P}^{2}(k)$ is projective by the Segre embedding $\mathbb{P}^{2}(k) \times \mathbb{P}^{2}(k) \hookrightarrow \mathbb{P}^{8}(k)$

$$
\left[X_{0}: X_{1}: X_{2}\right]\left[Y_{0}: Y_{1}: Y_{2}\right] \mapsto\left[X_{0} Y_{0}: X_{0} Y_{1}: \cdots: X_{2} Y_{1}: X_{2} Y_{2}\right]
$$

On the other hand, as in (3), one can easily prove that V is closed subvariety of $\mathbb{P}^{2}(k) \times \mathbb{P}^{2}(k)$ and hence also projective.

- V is not affine. Note that V is projective and has dimension 3 by Krull's Hauptidealsatz. Thus, as in (3), V can not be affine.
(5) (5 points) $\mathbb{A}_{k}^{3} \backslash V\left(X_{1}, X_{2}\right)$, where $\left(X_{1}, X_{2}, X_{3}\right)$ are the coordinates of \mathbb{A}_{k}^{3}. (Hint: use algebraic Hartogs theorem)
Solution. The prevariety $V:=\mathbb{A}_{k}^{3} \backslash V\left(X_{1}, X_{2}\right)$ is a variety, but it is neither affine nor projective.
- V is separated. Note that V is an open subset of \mathbb{A}_{k}^{3} and $\mathbb{A}_{K_{3}}^{3}$ is separated, hence V is also separated and is actually an open subvariety of \mathbb{A}_{k}^{3}.
- V is not affine. The natural inclusion $\iota: V \hookrightarrow \mathbb{A}_{k}^{3}$ induces a homomorphism of rings

$$
\iota^{\#}: \Gamma\left(\mathbb{A}_{k}^{3}, \mathscr{O}_{\mathbb{A}_{k}^{3}}\right) \rightarrow \Gamma\left(V, \mathscr{O}_{V}\right)
$$

and it is clear that $\iota^{\#}$ is nothing else but the natural restriction map. Note that \mathbb{A}_{k}^{3} is nonsingular and hence normal and $\operatorname{dim}\left(V\left(X_{1}, X_{2}\right)\right)=1$. Thus, by the Algebraic Hartogs Theorem, the map $\iota^{\#}$ is surjective. On the other hand, as \mathbb{A}_{k}^{3} is irreducible, the map $\iota^{\#}$ is also injective. In particular, $\iota^{\#}$ is an isomorphism of rings. If V is affine, then $\iota^{\#}$ is an isomorphism if and only if ι is an isomorphism. This is impossible because the inclusion ι is not surjective.

- V is not projective. Recall that the image of a complete variety is always closed. In particular, V is closed in \mathbb{A}_{k}^{3} which is absurd since \mathbb{A}_{k}^{3} is irreducible.
(6) (5 points) $\left(\mathbb{A}_{k}^{2} \backslash\{(0,0)\}\right) / \sim$, where $\left(x_{1}, x_{2}\right) \sim\left(x_{1}^{\prime}, x_{2}^{\prime}\right)$ if and only if there exists a non-zero number $\lambda \in k^{*}$ such that $x_{1}=\lambda x_{1}^{\prime}$ and $x_{2}=\lambda^{-1} x_{2}^{\prime}$. (Hint: consider the induced equivalence relation on each open subset $D\left(X_{i}\right) \subset \mathbb{A}_{k}^{2} \backslash\{(0,0)\}$ and prove that the quotient of $D\left(X_{i}\right)$ is isomorphic to \mathbb{A}_{k}^{1})
Solution. The prevariety V is not separated and hence is not a variety.
- Note that $\mathbb{A}_{k}^{2} \backslash\{(0,0)\}=D\left(X_{1}\right) \cup D\left(X_{2}\right)$. Moreover, if $\left(x_{1}, x_{2}\right) \sim\left(x_{1}^{\prime}, x_{2}^{\prime}\right)$ and $\left(x_{1}, x_{2}\right) \in D\left(X_{i}\right)$, then it is obvious that we have $\left(x_{1}^{\prime}, x_{2}^{\prime}\right) \in D\left(X_{i}\right)$. On each $D\left(X_{i}\right)$, consider the morphism $\pi_{i}: D\left(X_{i}\right) \rightarrow \mathbb{A}_{k}^{1},\left(x_{1}, x_{2}\right) \mapsto x_{1} x_{2}$. Then it is easy to check that π induces a bijection $D\left(X_{i}\right) / \sim \rightarrow \mathbb{A}_{k}^{1},\left[\left(x_{1}, x_{2}\right)\right] \mapsto x_{1} x_{2}$.
- According to the argument above, one can easily obtain $V=\left(\mathbb{A}_{k}^{1} \sqcup \mathbb{A}_{k}^{1}\right) / \sim$, where $x \sim y$ if and only if $x=y \neq 0$; that is, V is the line with double origin, which is not separated: consider the natural two inclusion $f_{i}: \mathbb{A}_{k}^{1} \rightarrow V$. Then the subset $\left\{z \in \mathbb{A}_{k}^{1} \mid f_{1}(z)=f_{2}(z)\right\}=\mathbb{A}_{k}^{1} \backslash\{0\}$ is not closed in \mathbb{A}_{k}^{1}

Problem 2 (40 points). Consider the following Du Val singularity of type $A_{n}(n \geq 1)$:

$$
X_{n}:=V\left(X_{1}^{2}+X_{2}^{2}+X_{3}^{n+1}\right) \subset \mathbb{A}_{k}^{3},
$$

where $\left(X_{1}, X_{2}, X_{3}\right)$ are the coordinates of \mathbb{A}_{k}^{3}.
(1) (5 points) Prove that $(0,0,0)$ is the unique singular point of X_{n}.

Proof. By Krull's Hauptidealsatz, every irreducible component of X_{n} has dimension 2. Consider the Jacobian matrix of $F=X_{1}^{2}+X_{2}^{2}+X_{3}^{n+1}$:

$$
J(F)=\left(2 X_{1}, 2 X_{2},(n+1) X_{3}^{n}\right) .
$$

Clearly, $J(F)$ has rank $=0$ only at the point $(0,0,0)$, which is the only singular point of X_{n}.
(2) (9 points) Determine the blowing-up $\pi_{n}: \widetilde{X}_{n} \rightarrow X_{n}$ of X_{n} at $(0,0,0)$.

Proof. Firstly we recall that the blowing-up of \mathbb{A}_{k}^{3} at $(0,0,0)$ is defined as following:

$$
\widetilde{\mathbb{A}}_{k}^{3}=\left\{\left(x_{1}, x_{2}, x_{3}\right)\left[y_{1}: y_{2}: y_{3}\right] \in \mathbb{A}_{k}^{3} \times \mathbb{P}^{2}(k) \mid x_{i} y_{j}=x_{j} y_{i}, 1 \leq i, j \leq 3\right\}
$$

The local affine descriptions of $\widetilde{\mathbb{A}}_{k}^{3}$ are given as following.

- The open subset $U_{1}:=\widetilde{A}_{k}^{3} \cap\left(\mathbb{A}_{k}^{3} \times D\left(Y_{1}\right)\right)$ is isomorphic to \mathbb{A}_{k}^{3} given as following:

$$
\left(z_{1}: z_{2}: z_{3}\right) \mapsto\left(z_{1}: z_{1} z_{2}: z_{1} z_{3}\right)\left[1: z_{2}: z_{3}\right]
$$

- The open subset $U_{2}:=\widetilde{A}_{k}^{3} \cap\left(\mathbb{A}_{k}^{3} \times D\left(Y_{2}\right)\right)$ is isomorphic to \mathbb{A}_{k}^{3} given as following:

$$
\left(t_{1}: t_{2}: t_{3}\right) \mapsto\left(t_{1} t_{2}: t_{2}: t_{2} t_{3}\right)\left[t_{1}: 1: t_{3}\right]
$$

- The open subset $U_{3}:=\widetilde{A}_{k}^{3} \cap\left(\mathbb{A}_{k}^{3} \times D\left(Y_{3}\right)\right)$ is isomorphic to \mathbb{A}_{k}^{3} given as following:

$$
\left(w_{1}: w_{2}: w_{3}\right) \mapsto\left(w_{1} w_{3}: w_{2} w_{3}: w_{3}\right)\left[w_{1}: w_{2}: 1\right]
$$

Denote by $\pi: \widetilde{\mathbb{A}}_{k}^{3} \rightarrow \mathbb{A}_{k}^{3}$ the first projection. By definition, the blowing-up of X_{n} at $(0,0,0)$ is the strict transform of X_{n} in \widetilde{A}_{k}^{3}. The local affine description of \widetilde{X}_{n} are given as following:

- Over U_{1}, one can easily obtain the composition

$$
F \circ \pi=Z_{1}^{2}+Z_{1}^{2} Z_{2}^{2}+Z_{1}^{n+1} Z_{3}^{n+1}=Z_{1}^{2}\left(1+Z_{2}^{2}+Z_{1}^{n-1} Z_{3}^{n+1}\right)
$$

In particular, $\widetilde{X}_{n} \cap U_{1}$ is defined by the equation

$$
1+Z_{2}^{2}+Z_{1}^{n-1} Z_{3}^{n+1}=0
$$

- Over U_{2}, similarly as above, $\widetilde{X}_{n} \cap U_{2}$ is defined by the equation

$$
T_{1}^{2}+1+T_{2}^{n-1} T_{3}^{n+1}=0
$$

- Over U_{3}, similarly as above, $\widetilde{X}_{n} \cap U_{2}$ is defined by the equation

$$
W_{1}^{2}+W_{2}^{2}+W_{3}^{n-1}=0
$$

(3) (5 points) Prove that $\pi_{1}^{-1}(0)$ is irreducible.

Proof. Denote by $E_{n}=\pi_{n}^{-1}(0)$. On the other hand, note that we have

$$
E_{n} \subset \pi^{-1}(0)=\{(0,0,0)\} \times \mathbb{P}^{2}(k)=\mathbb{P}^{2}(k)
$$

In the following, we aim to find the equation for E_{1} in $\mathbb{P}^{2}(k)$. Firstly we work over the affine open subset U_{1}. Note that we have $E_{n} \cap U_{1}=\widetilde{X}_{n}^{3} \cap\left\{Z_{1}=0\right\}$. In particular, $E_{1} \cap U_{1}$ is defined by the equations

$$
Z_{1}=1+Z_{2}^{2}+Z_{3}^{2}=0
$$

It follows that $E_{1} \subset \pi^{-1}(0)=\mathbb{P}^{2}(k)$ is defined by the equation $1+Y_{2}^{2}+Y_{3}^{2}=0$ in the affine open subset $D\left(Y_{1}\right)$. Similarly, $E_{1} \cap D\left(Y_{2}\right)$ is defined by the equation $Y_{1}^{2}+1+Y_{3}^{2}=0$ and $E_{1} \cap D\left(Y_{3}\right)$ is defined by the equation $Y_{1}^{2}+Y_{2}^{2}+1=0$. Therefore, it is obvious that $E_{1} \subset \mathbb{P}^{2}(k)$ is defined by the equation

$$
Y_{1}^{2}+Y_{2}^{2}+Y_{3}^{2}=0
$$

On the other hand, we can show that E_{1} is actually isomorphic to \mathbb{P}^{1} and hence is irreducible. To see this, consider the 2-nd Veronese embedding $\nu_{2}: \mathbb{P}^{1} \rightarrow \mathbb{P}^{2}$, which sends the point $\left[x_{0}: x_{1}\right]$ to $\left[x_{0}^{2}: x_{0} x_{1}: x_{1}^{2}\right]$. Then the image $\nu_{2}\left(\mathbb{P}^{1}\right)$ is defined as by the equation $Y_{1}^{2}=Y_{0} Y_{2}$. Then the isomorphism $f: \mathbb{P}^{2} \rightarrow \mathbb{P}^{2}$ defined by

$$
\left[y_{0}: y_{1}: y_{2}\right] \mapsto\left[y_{0}+i y_{2}: i y_{1}: y_{0}-i y_{2}:\right]
$$

induces an isomorphism between $E_{1} \subset \mathbb{P}^{2}$ and $\nu_{2}\left(\mathbb{P}^{1}\right) \subset \mathbb{P}^{2}$.
(4) (5 points) For $n \geq 2$, prove that $\pi_{n}^{-1}(0)$ has two irreducible components.

Proof. Similar to (3), for $n \geq 2$, the intersection $E_{n} \cap D\left(Y_{1}\right)$ is defined by the equation $1+Y_{2}^{2}=0$. The intersection $E_{n} \cap D\left(Y_{2}\right)$ is defined by the equation $Y_{1}^{2}+1=0$ and the intersection $E_{n} \cap D\left(Y_{3}\right)$ is defined by the equation $Y_{1}^{2}+Y_{2}^{2}=0$. In particular, one can easily see that $E_{1} \subset \mathbb{P}^{2}(k)$ is defined by the equation $Y_{1}^{2}+Y_{2}^{2}=0$. On the other hand, note that we have

$$
Y_{1}^{2}+Y_{2}^{2}=\left(Y_{1}+i Y_{2}\right)\left(Y_{1}-i Y_{2}\right)
$$

Moreover, since $E_{n}^{\prime}:=V\left(Y_{1}+i Y_{2}\right)$ and $E_{n}^{\prime \prime}:=V\left(Y_{1}-i Y_{2}\right)$ are projective lines in $\mathbb{P}^{2}(k)$, they are irreducible. Hence, E_{n} has exactly two irreducible components: E_{n}^{\prime} and $E_{n}^{\prime \prime}$.
(5) (7 points) Prove that \widetilde{X}_{n} is nonsingular if and only if $n \leq 2$.

Proof. - For $n=1$, then $\widetilde{X}_{1} \cap U_{1}$ is defined by the equation $F_{1}:=1+Z_{2}^{2}+Z_{3}^{2}=0$. Consider the Jacobian matrix of F_{1} :

$$
J\left(F_{1}\right)=\left(0,2 Z_{2}, 2 Z_{3}\right)
$$

By Krull's Hauptidealsatz, $\widetilde{X}_{1} \cap U_{1}$ has dimension 2 and is singular only at the points $\left(z_{1}, z_{2}, z_{3}\right)$ with $z_{2}=z_{3}=0$. However, one can easily see that the points $\left(z_{1}, 0,0\right)$ do not lie on $\widetilde{X}_{1} \cap U_{1}$. Hence, $\widetilde{X}_{1} \cap U_{1}$ is irreducible. The same arguments show that both $\widetilde{X}_{1} \cap U_{2}$ and $\widetilde{X}_{1} \cap U_{3}$ are nonsingular and hence \widetilde{X}_{1} is nonsingular.

- For $n \geq 2$. Then $\widetilde{X}_{n} \cap U_{1}$ is defined by the equation $F_{1}:=1+Z_{2}^{2}+Z_{1}^{n-1} Z_{3}^{n+1}=0$. Consider the Jacobian matrix of F_{1} :

$$
J\left(F_{1}\right)=\left((n-1) Z_{1}^{n-1} Z_{3}^{n+1}, 2 Z_{2},(n+1) Z_{1}^{n-1} Z_{3}^{n}\right)
$$

Let $\left(z_{1}, z_{2}, z_{3}\right) \in \widetilde{X}_{n} \cap U_{1}$ be a point such that $J\left(F_{1}\right)\left(z_{1}, z_{2}, z_{3}\right)$ has rank 0. Then clearly we have $z_{2}=0$. In particular, as $F_{1}\left(z_{1}, z_{2}, z_{3}\right)=0$, it follows that $z_{1}, z_{3} \neq 0$ and consequently $J\left(F_{1}\right)$ has rank 1 at $\left(z_{1}, z_{2}, z_{3}\right)$. Hence, $\widetilde{X}_{n} \cap U_{1}$ is nonsingular. The same argument applying to $\widetilde{X}_{n} \cap U_{2}$ shows that $\widetilde{X}_{n} \cap U_{2}$ is nonsingular.
Finally, the $\widetilde{X}_{n} \cap U_{3}$ is defined by the equation $F_{3}=W_{1}^{2}+W_{2}^{2}+W_{3}^{n-1}=0$. Consider the Jacobian matrix:

$$
J\left(F_{3}\right)=\left(2 W_{1}, 2 W_{2},(n-1) W_{3}^{n-2}\right)
$$

It follows that $\widetilde{X}_{3} \cap U_{3}$ is nonsingular outside $(0,0,0)$ and is nonsingular at $(0,0,0)$ if and only if $n=2$.
(6) (2 points) For $n \geq 3$, prove that \widetilde{X}_{n} has a unique singular point p, which is a Du Val singularity of type A_{n-2}; that is, locally \widetilde{X}_{n} is isomorphic to X_{n-2} at p.
Proof. According to the proof of (5), it is known that for $n \geq 3$, the variety \widetilde{X}_{n} has only one singular point $(0,0,0) \in \widetilde{X}_{n} \cap U_{3}$ which is defined by the equation

$$
W_{1}^{2}+W_{2}^{2}+W_{3}^{n-1}=0
$$

In particular, by definition, this is a Du Val singular point of type A_{n-2}.
(7) (5 points) Let $Y:=V\left(X_{1}^{2}-X_{2} X_{3}\left(X_{2}+X_{3}\right)\right) \subset \mathbb{A}_{k}^{3}$. Show that the blowing-up $\pi: \widetilde{Y} \rightarrow Y$ of Y at $(0,0,0)$ has exactly 3 singular points.
Proof. Following the same argument as in (2), one can easily derive the following local affine description of \widetilde{Y} :

- Over U_{1}, the affine variety $\widetilde{Y} \cap U_{1}$ is defined the following equation

$$
G_{1}:=1-Z_{1} Z_{2}^{2} Z_{3}-Z_{1} Z_{2} Z_{3}^{2}=0
$$

The Jacobian matrix of G_{1} is given as

$$
J\left(G_{1}\right)=\left(-Z_{2}^{2} Z_{3}-Z_{2} Z_{3}^{2}, 2 Z_{1} Z_{2} Z_{3}-Z_{1} Z_{3}^{2},-Z_{1} Z_{2}^{2}-2 Z_{1} Z_{2} Z_{3}\right)
$$

Let $\left(z_{1}, z_{2}, z_{3}\right) \in \tilde{Y} \cap U_{1}$ be a point. Then clearly all z_{i} are non-zero. In particular, if $J\left(G_{1}\right)\left(z_{1}, z_{2}, z_{3}\right)$ has rank 0 only if

$$
z_{2}=-z_{3}, \quad 2 z_{2}=z_{3}, \quad z_{2}=-2 z_{3}
$$

This implies that $z_{2}=z_{3}=0$ which is impossible. Hence $\tilde{Y} \cap U_{1}$ is nonsingular.

- Over U_{2}, the variety $\widetilde{Y} \cap U_{2}$ is defined by the equation

$$
G_{2}:=T_{1}^{2}-T_{2} T_{3}-T_{2} T_{3}^{2}=0
$$

The Jacobian matrix of G_{2} is given as

$$
J\left(G_{2}\right)=\left(2 T_{1},-T_{3}-T_{3}^{2},-T_{2}-2 T_{2} T_{3}\right)
$$

Then $J\left(G_{1}\right)$ has rank 0 at the point $\left(t_{1}, t_{2}, t_{3}\right)$ if and only if $\left(t_{1}, t_{2}, t_{3}\right)=(0,0,0)$ or $(0,0,-1)$. Clearly that these two points are contained in $\widetilde{Y} \cap U_{2}$ and they correspond to the points

$$
(0,0,0)[0: 1: 0] \quad \text { and } \quad(0,0,0)[0: 1:-1]
$$

in $\mathbb{A}_{k}^{3} \times \mathbb{P}^{2}(k)$, respectively.

- Over U_{3}, the variety $\widetilde{Y} \cap U_{3}$ is defined by the equation

$$
G_{3}:=W_{1}^{2}-W_{2}^{2} W_{3}-W_{2} W_{3}=0
$$

The Jacobian matrix of G_{2} is given as

$$
J\left(G_{2}\right)=\left(2 W_{1},-2 W_{2} W_{3}-W_{3},-W_{2}^{2}-W_{2}\right)
$$

Then $J\left(G_{2}\right)$ has rank 0 at the point $\left(w_{1}, w_{2}, w_{3}\right)$ if and only if $\left(w_{1}, w_{2}, w_{3}\right)=$ $(0,0,0)$ or $(0,-1,0)$. Clearly that these two points are contained in $\widetilde{Y} \cap U_{3}$ and they correspond to the points

$$
(0,0,0)[0: 0: 1] \quad \text { and } \quad(0,0,0)[0:-1: 1]
$$

in $\mathbb{A}_{k}^{3} \times \mathbb{P}^{2}(k)$, respectively.
In conclusion, the singular points of \widetilde{Y}_{n} are the following three points

$$
(0,0,0)[0: 1: 0],(0,0,0)[0: 1:-1]=(0,0,0)[0:-1: 1] \quad \text { and } \quad(0,0,0)[0: 0: 1]
$$

(8) (2 points) Show that Y is isomorphic to the Du Val singularity of type D_{4} which is defined by the following equation in $\mathbb{A}_{k}^{3}: X_{1}^{2}+X_{2}^{2} X_{3}+X_{3}^{3}=0$.
Proof. Consider the following coordinates changes $f: \mathbb{A}_{k}^{3} \rightarrow \mathbb{A}_{k}^{3}$

$$
\left(y_{1}: y_{2}: y_{3}\right) \mapsto\left(\frac{i y_{1}}{2}, \frac{i y_{2}+y_{3}}{2}, \frac{-i y_{2}+y_{3}}{2}\right)
$$

which is given in the form of matrix as following:

$$
A=\left(\begin{array}{ccc}
\frac{i}{2} & 0 & 0 \\
0 & \frac{i}{2} & \frac{1}{2} \\
0 & \frac{-i}{2} & \frac{1}{2}
\end{array}\right)
$$

It is easy to see that $\operatorname{det}(A) \neq 0$ and hence f is an isomorphism. Moreover, a straightforward computation shows that $f^{-1}(Y)$ is defined by the equation

$$
Y_{1}^{2}+Y_{2}^{2} Y_{3}+Y_{3}^{3}=0
$$

which is exactly the Du Val singularity of type D_{4}.

Problem 3 (30 points). For two integers $n \geq 1, d \geq 2$. Let $X_{n, d} \subset \mathbb{P}^{n+1}(k)$ be the n-dimensional Fermat hypersurface of degree $d \geq 2$ defined by the following equation

$$
X_{0}^{d}+X_{1}^{d}+\cdots+X_{n}^{d}+X_{n+1}^{d}=0
$$

where $\left[X_{0}: X_{1}: \cdots: X_{n}: X_{n+1}\right]$ is the homogeneous coordinates of $\mathbb{P}^{n+1}(k)$.
(1) (5 points) Prove that $X_{n, d}$ is nonsingular.

Proof. It is enough to prove it for $X_{n, d} \cap D\left(X_{i}\right)$. Without loss of generality, we may assume that $i=0$, then $X_{n, d} \cap D\left(X_{0}\right) \subset D\left(X_{0}\right)=\mathbb{A}_{k}^{n+1}$ is defined by the equation

$$
F_{0}:=1+X_{1}^{d}+\cdots+X_{n+1}^{d}=0
$$

where $\left(X_{1}, \cdots, X_{n+1}\right)$ are the coordinates of $D\left(X_{0}\right)=\mathbb{A}_{k}^{n+1}$. The the Jacobian matrix of F_{1} is given as following

$$
J\left(F_{0}\right)=\left(d X_{1}^{d-1}, \cdots, d X_{n+1}^{d-1}\right)
$$

One can easily derive that $J\left(F_{0}\right)$ has constant rank 1 along $X_{n, d} \cap D\left(X_{0}\right)$ and hence $X_{n, d} \cap D\left(X_{0}\right)$ is nonsingular. Similarly, one can see that $X_{n, d} \cap D\left(X_{i}\right)$ is nonsingular for any $0 \leq i \leq n+1$ and hence $X_{n, d}$ is nonsingular.
(2) (5 points) Let $H \subset \mathbb{P}^{n+1}(k)$ be the hyperplane defined by the equation $X_{0}=0$. Prove that $X_{n, d}$ is linearly equivalent to $d H$ as divisors in $\mathbb{P}^{n+1}(k)$.
Proof. Consider the non-zero rational function $\phi:=\frac{X_{0}^{d}+\cdots+X_{n+1}^{d}}{X_{0}^{d}} \in K\left(\mathbb{P}^{n+1}\right)^{*}$. Then for each $0 \leq i \leq n+1$, it is clear that we have

$$
\left.\operatorname{div}(\phi)\right|_{D_{X_{i}}}=\left.X_{n, d}\right|_{D\left(X_{i}\right)}-\left.d H\right|_{D\left(X_{i}\right)}
$$

Hence, by definition $X_{n, d}$ is linearly equivalent to $d H$.
(3) (5 points) Let $\iota: X_{n, d} \hookrightarrow \mathbb{P}^{n+1}(k)$ be the natural closed immersion. Show that there exists a natural short exact sequence as following

$$
0 \rightarrow \mathscr{O}_{\mathbb{P}^{n+1}(k)}(-d) \rightarrow \mathscr{O}_{\mathbb{P}^{n+1}(k)} \rightarrow \iota_{*} \mathscr{O}_{X_{n, d}} \rightarrow 0
$$

Proof. Denote by \mathscr{I} the ideal sheaf of $X_{n, d}$ in \mathbb{P}^{n+1}. Then we have the following exact sequence

$$
0 \rightarrow \mathscr{I} \rightarrow \mathscr{O}_{\mathbb{P}^{n+1}} \rightarrow \iota_{*} \mathscr{O}_{X_{n, d}} \rightarrow 0
$$

It is enough to show that \mathscr{I} is isomorphic to $\mathscr{O}_{\mathbb{P}^{n+1}}(-d)$. Note that $X_{n, d}$ is a prime divisor in \mathbb{P}^{n+1}, we have $\mathscr{I} \cong \mathscr{O}_{\mathbb{P}^{n+1}}\left(-X_{n, d}\right)$. To see that $\mathscr{O}_{\mathbb{P}^{n+1}}\left(-X_{n, d}\right) \cong \mathscr{O}_{\mathbb{P}^{n+1}}(-d)$, we observe that $\mathscr{O}_{\mathbb{P}^{n+1}}\left(X_{n, d}\right)$ is isomorphic to $\mathscr{O}_{\mathbb{P}^{n+1}}(d)$ since $F=X_{0}^{d}+\cdots+X_{n+1}^{d}$ is a non-zero element of $\Gamma\left(\mathbb{P}^{n+1}, \mathscr{O}_{\mathbb{P}^{n+1}}(d)\right)$ and $X_{n, d}=\operatorname{div}(F)$.
(4) (5 points) Deduce that $H^{q}\left(X_{n, d}, \mathscr{O}_{X_{n, d}}(m)\right)=0$ for $1 \leq q \leq n-1$.

Proof. Since $X_{n, d}$ is a closed subvariety of \mathbb{P}^{n+1}, we have the following equality

$$
H^{q}\left(X_{n, d}, \mathscr{O}_{X_{n, d}}(m)\right)=H^{q}\left(\mathbb{P}^{n+1}, \iota_{*}\left(\mathscr{O}_{X_{n, d}}(m)\right)\right)
$$

On the other hand, since $\mathscr{O}_{X_{n, d}}(m) \cong \iota^{*} \mathscr{O}_{\mathbb{P}^{n+1}}(m)$ by definition and $\mathscr{O}_{\mathbb{P}^{n+1}(m)}$ is locally free, according to the projection formula, we have

$$
\iota_{*}\left(\mathscr{O}_{X_{n, d}}(m)\right)=\iota_{*} \iota^{*} \mathscr{O}_{\mathbb{P}^{n+1}}(m)=\iota_{*} \mathscr{O}_{X_{n, d}} \otimes \mathscr{O}_{\mathbb{P}^{n+1}}(m)
$$

Since $\mathscr{O}_{\mathbb{P}^{n+1}}(m)$ is locally free, tensoring $\mathscr{O}_{\mathbb{P}^{n+1}}(m)$ with the short exact sequence in (3) yields a short exact sequence

$$
0 \rightarrow \mathscr{O}_{\mathbb{P}^{n+1}}(m-d) \rightarrow \mathscr{O}_{\mathbb{P}^{n+1}}(m) \rightarrow \iota_{*} \mathscr{O}_{X_{n, d}} \otimes \mathscr{O}_{\mathbb{P}^{n+1}}(m) \rightarrow 0
$$

For $1 \leq q \leq n-1$, the short exact sequence above yields an exact sequence of vector spaces

$$
H^{q}\left(\mathbb{P}^{n+1}, \mathscr{O}_{\mathbb{P}^{n+1}}(m)\right) \rightarrow H^{q}\left(\mathbb{P}^{n+1}, \iota_{*} \mathscr{O}_{X_{n, d}} \otimes \mathscr{O}_{\mathbb{P}^{n+1}}(m)\right) \rightarrow H^{q+1}\left(\mathbb{P}^{n+1}, \mathscr{O}_{\mathbb{P}^{n+1}}(m-d)\right)
$$

Recall that we have $H^{i}\left(\mathbb{P}^{n+1}, \mathscr{O}_{\mathbb{P}^{n+1}}(j)\right)=0$ for $1 \leq i \leq n$ and $j \in \mathbb{Z}$ from the course or using Kodaira's Vanishing Theorem + Serre Duality. In particular, this implies that for $1 \leq q \leq n-1$ and any $m \in \mathbb{Z}$, we have

$$
H^{q}\left(X_{n, d}, \mathscr{O}_{X_{n, d}}(m)\right)=H^{q}\left(\mathbb{P}^{n+1}, \iota_{*} \mathscr{O}_{X_{n, d}} \otimes \mathscr{O}_{\mathbb{P}^{n+1}}(m)\right)=0
$$

This finishes the proof.
(5) (8 points) Compute $\operatorname{dim}_{k} H^{0}\left(X_{n, d}, \mathscr{O}_{X_{n, d}}(m)\right)$ and $\operatorname{dim}_{k} H^{n}\left(X_{n, d}, \mathscr{O}_{X_{n, d}}(m)\right)$.

Solution. - For $q=0$, as in (4), we have the following short exact sequence of vector spaces
$0 \rightarrow H^{0}\left(\mathbb{P}^{n+1}, \mathscr{O}_{\mathbb{P}^{n+1}}(m-d)\right) \rightarrow H^{0}\left(\mathbb{P}^{n+1}, \mathbb{P}^{n+1}(m)\right) \rightarrow H^{0}\left(X_{n, d}, \mathscr{O}_{X_{n, d}}(m)\right) \rightarrow 0$.
In particular, this implies that we have
$\operatorname{dim}_{k} H^{0}\left(X_{n, d}, \mathscr{O}_{X_{n, d}}(m)\right)=\operatorname{dim}_{k} H^{0}\left(\mathbb{P}^{n+1}, \mathscr{O}_{\mathbb{P}^{n+1}}(m)\right)-\operatorname{dim}_{k} H^{0}\left(\mathbb{P}^{n+1}, \mathscr{O}_{\mathbb{P}^{n+1}}(m-d)\right)$.
Recall that for any $j \in \mathbb{Z}$, we have $H^{0}\left(\mathbb{P}^{n+1}, \mathscr{O}_{\mathbb{P}^{n+1}}(j)\right)=S_{j}$, where S_{j} is the set of homogeneous polynomials of degree j in $k\left[X_{0}, \cdots, X_{n+1}\right]$. In particular, we have

$$
\operatorname{dim}_{k} H^{0}\left(\mathbb{P}^{n+1}, \mathscr{O}_{\mathbb{P}^{n+1}}(j)\right)= \begin{cases}0 & \text { if } \quad j<0 \\ \binom{n+j+1}{j}=\binom{n+j+1}{n+1} & \text { if } \quad j \geq 0\end{cases}
$$

As a consequence, we get

$$
\operatorname{dim}_{k} H^{0}\left(X_{n, d}, \mathscr{O}_{X_{n, d}}(m)\right)= \begin{cases}0 & \text { if } m<0 \\ \binom{n+m+1}{m} & \text { if } 0 \leq m<d \\ \binom{n+m+1}{m}-\binom{n+m-d+1}{m-d} & \text { if } m \geq d\end{cases}
$$

- For $q=n$, as in (4), we have the following short exact sequence of vector spaces $0 \rightarrow H^{n}\left(X_{n, d}, \mathscr{O}_{X_{n, d}}(m)\right) \rightarrow H^{n+1}\left(\mathbb{P}^{n+1}, \mathscr{O}_{\mathbb{P}^{n+1}}(m-d)\right) \rightarrow H^{n+1}\left(\mathbb{P}^{n+1}, \mathbb{P}^{n+1}(m)\right) \rightarrow 0$.

The last term follows from the Grothendieck Vanishing Theorem and the fact that $\operatorname{dim}\left(X_{n, d}\right)=n$. On the other hand, by Serre Duality and the fact $\Omega_{\mathbb{P}^{n+1}} \cong$ $\mathscr{O}_{\mathbb{P}^{n+1}}(-n-2)$, for any $j \in \mathbb{Z}$, we have
$\operatorname{dim}_{k} H^{n+1}\left(\mathbb{P}^{n+1}, \mathscr{O}_{\mathbb{P} n+1}(j)\right)=\operatorname{dim}_{k} H^{0}\left(\mathbb{P}^{n+1}, \mathscr{O}_{\mathbb{P}^{n+1}}(-n-2-j)\right)=\operatorname{dim}_{k} S_{-n-2-j}$.
As a consequence, we obtain
$\operatorname{dim}_{k} H^{n}\left(X_{n, d}, \mathscr{O}_{\mathbb{P}^{n+1}}(m)\right)=\left\{\begin{array}{lll}0 & \text { if } \quad m>d-n-2 ; \\ \binom{d-m-1}{d-n-m-2}=\binom{d-m-1}{n+1} & \text { if } \quad-n-2 \leq m \leq d-n-2 \\ \binom{d-m-1}{n+1}-\binom{-m-1}{n+1} & \text { if } \quad m \leq-n-2 .\end{array}\right.$
(6) (2 points) Prove that if $X_{1, d}$ is isomorphic to $X_{1, d^{\prime}}$, then $d=d^{\prime}$.

Proof. By (5), taking $m=0$, we have

$$
\operatorname{dim}_{k} H^{1}\left(X_{1, d}, \mathscr{O}_{X_{1, d}}\right)=\binom{d-1}{2}=\frac{(d-1)(d-2)}{2}
$$

In particular, if $X_{1, d}$ is isomorphic to $X_{1, d^{\prime}}$ is isomorphic to $X_{1, d^{\prime}}$, then we must have

$$
\operatorname{dim}_{k} H^{1}\left(X_{1, d}, \mathscr{O}_{X_{1, d}}\right)=\operatorname{dim}_{k} H^{1}\left(X_{1, d^{\prime}}, \mathscr{O}_{X_{1, d^{\prime}}}\right)
$$

This implies immediately that $d=d^{\prime}$.
Remark. In the proof above, a priori we can not apply the argument to other intergers $m \neq 0$ because $\mathscr{O}_{X_{1, d}}(1)$ depends on the embedding of $X_{1, d}$ into projective spaces, which is not canonical. Thus, if we want to apply the same argument to other $m \neq 0$, we do need to show that any isomorphism $f: X_{1, d} \rightarrow X_{1, d^{\prime}}$ induces also an isomorphism $f^{*} \mathscr{O}_{X_{1, d^{\prime}}}(m) \cong \mathscr{O}_{X_{1, d^{\prime}}}(m)$.

