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Problem 1 (30 points). For the following prevarieties, determine whether it is a variety
or not. If your answer is no, explain your reasons. If your answer is yes, then determine
whether it is an affine variety or a projective variety and explain your reasons.

(1) (5 points) A} \ S, where S is a finite set.

Solution. The prevariety V := Al \ S is an affine variety, but not projective.

e V is a variety. Since A}{ is separated and V C A,lg is an open subset, thus V is
also separated.

e V is an affine variety. Since S C Ai is finite, we can find a polynomial F' €
k[X] =T(Af, Op1) such that V(F) = S, e.g. F=1if S =0and F = [[(X —a,)
if S ={a;}. Then V is the standard open subset D(F) of A}, which is affine.

e V is not projective. Note that Ai is irreducible and so is V. In particular, if V

is projective, then I'(V, 0y ) = k, which is absurd as X|y is not constant.
O

(2) (5 points) P1(k) \ S, where S is a non-empty finite set.
Solution. The prevariety V = P!(k) \ S is an affine variety, but not projective.
e Since S is not empty, one can find a point s € S. Set S = 5\ {s}. Note that
the open subvariety P!(k) \ {s} of P!(k) is isomorphic to A}l. Hence, we have

V = A} \ S and we are done by ([l).
U

(3) (5 points) V(XoYy + X1Y1 + XoYs) C Ai x P2(k), where (Xo, X1, X2) are the co-
ordinates of A} and [Y : Y7 : Y5 are the homogeneous coordinates of P?(k).

Solution. The prevariety V is a variety, but it is neither affine nor projective.
e V is separated. Note that A} x P?(k) is separated. Set U; = D(Y;) C P%(k).
Then {Ai x U;}o<i<2 form an affine open covering of Az x P2(k). Moreover,
note that V' N (Ai x U;) is closed for any 0 <i < 2, e.g.

VN (Az X U()) = V(XO =+ X1Y1 =+ XQYQ),

where (Xo, X1, X2) are the coordinates of A3 and [1 : Y] : Y2] are the coordinates
of Uy = Up. In particular, V is a closed subvariety of A? x P?(k) and hence is
separated.

e V is not affine. Consider the first projection p : V. — Ai, which is clearly
surjective. Then the fibre Fy = p~1(0) of p over the origin is exactly P?(k). In
particular, Fj is a closed projective variety of V' with dimension 2. Hence, V is
not affine. Otherwise, we assume to the contrary that V is affine. Then there
exists a positive integer N such that V' C A{CV . As Fy has dimension 2, it follows
that there exists a projection to coordinates m : AN — Al such that m(Fp) is
dense in A}C. However, since Fy is projective, the image m(Fp) is also complete.
Since Fj is irreducible, the image 7(Fp) is a point, which is a contradiction as
m(Fp) is dense in A}

e V is not projective. Assume to the contrary that V' is projective. Then p(V) =
A% is complete, which is absurd.

0

Remark. The same argument as in the proof can be used to show that a quasi-affine
variety is complete if and only if it is 0-dimensional. O

(4) (5 points) V(XoYp + X1Y1 + XoY2) C P2(k) x P?(k), where [Xo : X1 : Xo] (resp.
[Yo : Y7 : Y3]) are the homogeneous coordinates of the first (resp. second) factor.

Solution. The prevariety V is a projective variety, but not affine
1



e V is projective. Firstly we note that P2(k) x P?(k) is projective by the Segre
embedding P?(k) x P?(k) — P8(k)

[Xo . X1 . Xg][Yb . Yi }/2] = [X()Yb . XOY1 ceee XQ)/l ZXQYQ].

On the other hand, as in (E), one can easily prove that V is closed subvariety
of P2(k) x P?(k) and hence also projective.
e VV is not affine. Note that V is projective and has dimension 3 by Krull’s
Hauptidealsatz. Thus, as in (B), V' can not be affine.
O

(5) (5 points) A} \ V(X1, Xs), where (X1, X2, X3) are the coordinates of A}. (Hint: use
algebraic Hartogs theorem)
Solution. The prevariety V := A3\ V (X1, X3) is a variety, but it is neither affine nor
projective.
e V is separated. Note that V is an open subset of A? and A3 is separated, hence
V' is also separated and is actually an open subvariety of Az.
e V is not affine. The natural inclusion ¢ : V — Az induces a homomorphism of
rings

i T(AY, Op3) = T(V, 0)

and it is clear that # is nothing else but the natural restriction map. Note
that A? is nonsingular and hence normal and dim(V (X1, X2)) = 1. Thus,
by the Algebraic Hartogs Theorem, the map ¢ is surjective. On the other
hand, as Ai is irreducible, the map # is also injective. In particular, :# is an
isomorphism of rings. If V is affine, then (# is an isomorphism if and only if ¢
is an isomorphism. This is impossible because the inclusion ¢ is not surjective.

e V is not projective. Recall that the image of a complete variety is always closed.

In particular, V' is closed in Az which is absurd since Az is irreducible.
O
(6) (5 points) (A7 \ {(0,0)})/ ~, where (z1,z2) ~ (z},2%) if and only if there exists a
non-zero number A\ € k* such that 1 = Az} and z2 = A~'2). (Hint: consider the
induced equivalence relation on each open subset D(X;) C Af \ {(0,0)} and prove
that the quotient of D(X;) is isomorphic to A})
Solution. The prevariety V' is not separated and hence is not a variety.

e Note that AZ \ {(0,0)} = D(X;1) U D(X2). Moreover, if (z1,z2) ~ (2}, 2}) and
(x1,22) € D(X;), then it is obvious that we have (2, z}) € D(X;). On each
D(X;), consider the morphism ; : D(X;) — A,lg, (z1,22) — w1x9. Then it is
easy to check that 7 induces a bijection D(X;)/ ~— AL, [(z1,22)] > x122.

e According to the argument above, one can easily obtain V = (AL UAL)/ ~,
where z ~ y if and only if x = y # 0; that is, V is the line with double origin,
which is not separated: consider the natural two inclusion f; : A}C — V. Then
the subset {z € AL | f1(z) = fa(2)} = A} \ {0} is not closed in A}

O

Problem 2 (40 points). Consider the following Du Val singularity of type A, (n > 1):
X, = V(X7 + X3+ X5 C A,
where (X1, X, X3) are the coordinates of Aﬁ.
(1) (5 points) Prove that (0,0,0) is the unique singular point of X,.

Proof. By Krull’s Hauptidealsatz, every irreducible component of X, has dimension
2. Consider the Jacobian matrix of F = X% + X2 + X§l+1:

J(F) = (2X1,2Xy, (n + 1) X1).

Clearly, J(F') has rank = 0 only at the point (0,0, 0), which is the only singular point
of X,,. O



(2) (9 points) Determine the blowing-up m, : X,, = X,, of X, at (0,0,0).
Proof. Firstly we recall that the blowing-up of A? at (0,0,0) is defined as following:
Af = {(w1, 22, 23)[y1 2 y2 < y3] € A} x P2(k) | wiy; = zjui, 1 < 4,5 < 3}
The local affine descriptions of 1&% are given as following.
e The open subset Uy := AN (A3 x D(Y7)) is isomorphic to A3 given as following:
(21129 23) = (211 2122 ¢ z123)[1 : 22 : 23]
e The open subset Uy := gz N (A3 x D(Y3)) is isomorphic to A} given as following:
(tl 1o tg) — (tth 1 to :t2t3)[t1 01 tg]
e The open subset Us := gz N(A? x D(Y3)) is isomorphic to A} given as following:
(w1 Twy wg) — (w1w3 T Wows - wg)[wl Twy 1]
Denote by 7 : &2 — Ai the first projection. By definition, the blowing-up of X,, at
(0,0,0) is the strict transform of X,, in A7. The local affine description of X,, are

given as following:
e Over Uy, one can easily obtain the composition

Fom=2}+7}23 + 27 z0% = Z3(1 + Z3 + z0 1z,
In particular, X,, N U, is defined by the equation
L+ 2Z5+ 227tz =0,
e Over Uy, similarly as above, X,, N Uy is defined by the equation
TE+1+ Ty Tyt =o.
e Over Us, similarly as above, )Z'n N U, is defined by the equation
WE+ W5 +wit =o.

(3) (5 points) Prove that 77 1(0) is irreducible.
Proof. Denote by E,, = m,1(0). On the other hand, note that we have

E, c 7740) = {(0,0,0)} x P?(k) = P*(k).

In the following, we aim to find the equation for Ey in P?(k). Firstly we work over
the affine open subset U;. Note that we have E,NU; = X2N{Z; = 0}. In particular,
FE1 N Uy is defined by the equations

Iy =1+2Z3+75=0.

It follows that By C 7 1(0) = P?(k) is defined by the equation 1+ Y3 + Y = 0
in the affine open subset D(Y7). Similarly, E1 N D(Y3) is defined by the equation
Y2 +1+Y$ = 0and E;ND(Y3) is defined by the equation Y2 +YZ 41 = 0. Therefore,
it is obvious that F; C P?(k) is defined by the equation

YE+Y:+YE=0.

On the other hand, we can show that E; is actually isomorphic to P! and hence is

irreducible. To see this, consider the 2-nd Veronese embedding v, : P! — P2, which

sends the point [zg : 21] to [#3 : zow1 : 23]. Then the image vo(P!) is defined as by

the equation Y12 = Y,Y5. Then the isomorphism f : P? — P? defined by

[o : y1 : w2l = [yo + iy iy1 Yo — iy2 1]

induces an isomorphism between E; C P? and vo(P!) C P2 O

(4) (5 points) For n > 2, prove that 7, 1(0) has two irreducible components.



Proof. Similar to (H), for n > 2, the intersection E,,ND(Y}) is defined by the equation
1+ Y3 = 0. The intersection E, N D(Y2) is defined by the equation Y + 1 = 0 and
the intersection F,, N D(Y3) is defined by the equation Y? + Y = 0. In particular,
one can easily see that By C P?(k) is defined by the equation Y + Y2 = 0. On the
other hand, note that we have

VP +Y5 = (V1 +iYa)(Y) — iYa).
Moreover, since E/ := V(Y] +iY2) and E] := V(Y1 — iYs) are projective lines in
P2(k), they are irreducible. Hence, E,, has exactly two irreducible components: E!,
and E. O
(5) (7 points) Prove that X,, is nonsingular if and only if n < 2.

Proof. e For n =1, then XlﬁUl is defined by the equation F; := 1+Z§+Z§ =0.
Consider the Jacobian matrix of Fi:

J(F1) = (0,22,,2Z3).

By Krull’s Hauptidealsatz, )~(1 N U; has dimension 2 and is singular only at
the points (21, 22, 23) with 2o = 23 = 0. However, one can easily see that the
points (z1,0,0) do not lie on )?1 N U;. Hence, )21 N U; is irreducible. The same
arguments show that both X 1 NUy and X 1 N U3 are nonsingular and hence X 1
is nonsingular.

e Forn > 2. Then X,,NU; is defined by the equation F} := 1—|—Z22+Z?_1Z§L+1 =0.
Consider the Jacobian matrix of Fy:

J(F) = ((n— 12y 128 27y, (n+ 1) 271 Z5).

Let (z1,29,23) € X, NU; be a point such that J(Fy)(z1,22,23) has rank 0.
Then clearly we have zo = 0. In particular, as Fi(z1, 22, 23) = 0, it follows that
21,23 # 0 and consequently J(F;) has rank 1 at (z1, 22, 23). Hence, )?n NU;p is
nonsingular. The same argument applying to )Z'n N Us shows that )Afn N U, is
nonsingular.
Finally, the )?n N Us is defined by the equation Fj5 = 1/V12 + W22 + Wg‘_l =0.
Consider the Jacobian matrix:

J(F3) = (2W1,2Wa, (n — )W),
It follows that )?3 N Us is nonsingular outside (0,0,0) and is nonsingular at

(0,0,0) if and only if n = 2.
O
(6) (2 points) For n > 3, prove that X,, has a unique singular point p, which is a Du Val
singularity of type A,_o; that is, locally )?n is isomorphic to X, _o at p.
Proof. According to the proof of (E), it is known that for n > 3, the variety X, has

only one singular point (0,0,0) € X,, N Us which is defined by the equation
Wi+ W5+ Wit =0.
In particular, by definition, this is a Du Val singular point of type A,_». O
(7) (5 p~oints) Let Y := V(X? — XoX3(X2 4+ X3)) C A}. Show that the blowing-up
m:Y =Y of Y at (0,0,0) has exactly 3 singular points.

Proof. Following the same argument as in (B), one can easily derive the following
local affine description of Y N
e Over Uy, the affine variety Y N U; is defined the following equation

Gy :=1— 7217373 — 71 Z273 = 0.
The Jacobian matrix of (G} is given as

J(G) = (=Z373 — Zy75,221 2573 — 7123, — 71 Z5 — 271 Z2Z3)



5

Let (z1,29,23) € Y N Uy be a point. Then clearly all z; are non-zero. In
particular, if J(G1)(z1, 22, z3) has rank 0 only if

29 = —23, 220 = 23, 29 = —223.
This implies that z2 = z3 = 0 which is impossible. Hence YN U, is nonsingular.
e Over Us, the variety Y N U, is defined by the equation
Go :=TF — ToT3 — TyTi = 0.
The Jacobian matrix of (G5 is given as
J(Gy) = (2T, —T3 — T3, — Ty — 2T5T3).
Then J(G1) has rank 0 at the point (¢1,t2, t3) if and only if (¢ b2, ts) = (0,0,0)

or (0,0,—1). Clearly that these two points are contained in Y N Uz and they
correspond to the points

(0,0,0)[0:1:0] and (0,0,0)[0:1: —1],
in A3 x P%(k), respec‘iively.
e Over Us, the variety Y N Us is defined by the equation
Gy = Wi - WiWs — WoWs = 0.
The Jacobian matrix of G is given as
J(Go) = (2W1, —2WoWs — Wy, = W3 — W),
Then J(G2) has rank 0 at the point (w;,ws,ws) if and only if (wlszg,wg) =

(0,0,0) or (0,—1,0). Clearly that these two points are contained in Y N Us and
they correspond to the points

(0,0,0)[0:0:1] and (0,0,0)[0 : =1 : 1],
in A? x P?(k), respectively. B
In conclusion, the singular points of Y,, are the following three points
(0,0,0)[0:1:0],(0,0,0)[0:1:—1] =(0,0,0)[0: =1 :1] and (0,0,0)[0:0:1]
O

(8) (2 points) Show that Y is isomorphic to the Du Val singularity of type D4 which is
defined by the following equation in A3: X7 + X2 X5+ X3 = 0.
Proof. Consider the following coordinates changes f : Ai — Ai

Wi w2 +ys —iy2 +ys
27 2 7 2

which is given in the form of matrix as following:

(y11y213/3)H(

i 0 0
aslo 5y
—1 1

0 7 2

It is easy to see that det(A) # 0 and hence f is an isomorphism. Moreover, a
straightforward computation shows that f~!(Y) is defined by the equation

YE+ V7Y + Y5 =0,
which is exactly the Du Val singularity of type Djy. t
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Problem 3 (30 points). For two integers n > 1, d > 2. Let X, 4 C P""(k) be the
n-dimensional Fermat hypersurface of degree d > 2 defined by the following equation
X§+x{+ -+ X3+ X2, =0,
where [Xg: X7 :---: X, : X,,p1] is the homogeneous coordinates of P+ (k).
(1) (5 points) Prove that X, ;4 is nonsingular.

Proof. It is enough to prove it for X,, ;N D(X;). Without loss of generality, we may
assume that i = 0, then X, 4N D(X() C D(Xg) = A} is defined by the equation

Fo:=1+X{+--+ X%, =0,

where (X1,--+,X,41) are the coordinates of D(Xo) = A}T'. The the Jacobian
matrix of F} is given as following

J(Fp) = (X, ,daxa)).

One can easily derive that J(Fp) has constant rank 1 along X, 4 N D(Xp) and hence
Xn,aND(Xp) is nonsingular. Similarly, one can see that X,, 4N D(X;) is nonsingular
for any 0 <7 <n+ 1 and hence X,, 4 is nonsingular. O

(2) (5 points) Let H C P"*'(k) be the hyperplane defined by the equation Xy = 0.
Prove that X, 4 is linearly equivalent to dH as divisors in P"1(k).

Xg+-+Xx4

Proof. Consider the non-zero rational function ¢ := <7 ST EK (Pt 1)*. Then
0

for each 0 < i < n+1, it is clear that we have
div(¢)|px, = Xnalpx) — dH|p(x,)-

Hence, by definition X, 4 is linearly equivalent to dH. O

(3) (5 points) Let ¢ : X;, 4 = P""1(k) be the natural closed immersion. Show that there
exists a natural short exact sequence as following

0— ﬁpn+1(k)(—d) — ﬁ}pnﬂ(k) — L*ﬁxmd — 0.

Proof. Denote by .# the ideal sheaf of X,, 4 in P"*1. Then we have the following
exact sequence
0= I = Opnt1 = 1.0x, ;, — 0.

It is enough to show that .# is isomorphic to Opn+1(—d). Note that X, 4 is a prime di-
visor in P" ™!, we have . 2 Opni1(— X, 4). To see that Opni1 (=X 4) = Opnir (—d),
we observe that Opn+1(Xp 4) is isomorphic to Opnt1(d) since F = X§ + -+ X4,
is a non-zero element of I'(P" ™!, Opni1(d)) and X, 4 = div(F). O
(4) (5 points) Deduce that HY(X,, 4, Ox, ,(m)) =0for 1 <g<n—1.
Proof. Since X, 4 is a closed subvariety of P"*+1 we have the following equality
Hq(de? ﬁXn,d (m)) = Hq(Pn+17 L*(ﬁXn,d(m)))'

On the other hand, since Ox, ,(m) = (*Opnt1(m) by definition and Opni1(y,) is
locally free, according to the projection formula, we have

L(Ox, 4(M)) = 1™ Opnir(m) = 1.0x,, ; @ Opnia(m).

Since Opn+1(m) is locally free, tensoring Opn+1(m) with the short exact sequence in
(B) yields a short exact sequence

0— ﬁpn+1 (m - d) — ﬁpn+1 (m) — L*ﬁxnyd (024 ﬁ]pn-u (m) — 0.

For 1 < ¢ < n—1, the short exact sequence above yields an exact sequence of vector
spaces

HUP" ! Opnsi(m)) — HU P, 1,0x,, , ® Opnsi(m)) — HTH (P, Opnia (m — d))
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Recall that we have H! (P!, &pnyi1(j)) = 0 for 1 <i < n and j € Z from the course
or using Kodaira’s Vanishing Theorem + Serre Duality. In particular, this implies
that for 1 < g <n —1 and any m € Z, we have

Hq(Xn’d, ﬁxn,d(m)) = Hq(]P)n+1, L*ﬁXn,d ® Opnt1 (m)) =0.

This finishes the proof. ([l
(5) (8 points) Compute dimy H*(Xy 4, Ox, ,(m)) and dimy H"(X,, 4, Ox,, ,(m)).
Solution. e For ¢ = 0, as in (), we have the following short exact sequence of

vector spaces
0 — HO(P"™, Opnir(m — d)) — HO (P P"" (m)) — HY(X, 4, Ox, ,(m)) — 0.
In particular, this implies that we have
dimy, H°(X,, 4, Ox, ,(m)) = dimy, HOY (P, Opnii(m)) — dimy, HO (P, Opnis (m — d)).
Recall that for any j € Z, we have HY(P""! Opnia1(j)) = S;, where S is the

set of homogeneous polynomials of degree j in k[Xp, -, X;,11]. In particular,
we have
0 if j<O0;
dimy, HO(P"*, Opnia (5)) = : : DU
("7 = (Y i =0
As a consequence, we get
0 if m <0
dimy, HO(de, ﬁXn,d(m)) = (n+z+1) if 0<m< d;
(n+x+1) . (n+z:g+1) if m>d.

e For g =n, asin (H), we have the following short exact sequence of vector spaces
0 = H"(Xna, Ox, ,(m)) = H" NP, Opnir (m — d)) — H" TP PP (m)) — 0.
The last term follows from the Grothendieck Vanishing Theorem and the fact
that dim(X,, 4) = n. On the other hand, by Serre Duality and the fact Qpn+1 =
Opn+1(—n — 2), for any j € Z, we have
dimy, H" ™ (P Opnia (4)) = dimy, HY(P" Opria (—n — 2 — 5)) = dimg S_p—2;.
As a consequence, we obtain
0 if m>d—n-—2;
dimy, H" (X, g, Opns1(m)) = ¢ ( d=m—1 )= (d_Tl_l) if —n—-2<m<d-—n-2;
(L) -G i m<on-2
(6) (2 points) Prove that if X, 4 is isomorphic to X ¢, then d = d’.
Proof. By (E), taking m = 0, we have

dimg Hl(Xl,d, ﬁxm) = (d_ 1) = w

2 2

In particular, if X g4 is isomorphic to X 4 is isomorphic to X 4, then we must have
dimy, H'(X1,4, Ox, ) = dimy, H' (X1, Ox, -
This implies immediately that d = d'. O

Remark. In the proof above, a priori we can not apply the argument to other in-
tergers m # 0 because Ox, ,(1) depends on the embedding of X 4 into projective
spaces, which is not canonical. Thus, if we want to apply the same argument to other
m # 0, we do need to show that any isomorphism f : X; 4 — X; ¢ induces also an
isomorphism f*Ox, ,(m)= Ox, ,(m). O



