

Exercise sheet 5

Exercise 1 (Stalks of hom-sheaf). Let $X = [0, 1]$ with cofinite topology. Let $\underline{\mathbb{Z}}_X$ be the constant sheaf over X with respect to \mathbb{Z} .

- (1) Let \mathcal{F} be the skyscraper sheaf \mathbb{Z} at $0 \in X$. Show that \mathcal{F} admits a natural $\underline{\mathbb{Z}}_X$ -module structure, i.e. \mathcal{F} is a sheaf of $\underline{\mathbb{Z}}_X$ -modules.
- (2) Let $U \subset X$ be a non-empty open subset of X . Show that we have

$$\mathrm{Hom}_{\underline{\mathbb{Z}}_X}(\mathcal{F}|_U, \underline{\mathbb{Z}}_X|_U) = 0.$$

- (3) Determine the stalks of \mathcal{F} and $\underline{\mathbb{Z}}_X$ at 0.
- (4) Determine the group $\mathrm{Hom}_{\underline{\mathbb{Z}}_{X,0}}(\mathcal{F}_0, \underline{\mathbb{Z}}_{X,0})$. In particular, prove that the natural homomorphism

$$\mathcal{H}\mathrm{om}_{\underline{\mathbb{Z}}_X}(\mathcal{F}, \underline{\mathbb{Z}}_X)_0 \rightarrow \mathrm{Hom}_{\underline{\mathbb{Z}}_{X,0}}(\mathcal{F}_0, \underline{\mathbb{Z}}_{X,0})$$

is not surjective.

- (5) Let $U = X \setminus \{0\}$ and let $\underline{\mathbb{Z}}_U$ be the constant sheaf over U with respect to \mathbb{Z} . Denote by \mathcal{G} the sheaf obtained by extending $\underline{\mathbb{Z}}_U$ by zero (see Exercise 6 in Exercise sheet 1). Prove that \mathcal{G} is a sheaf of $\underline{\mathbb{Z}}_X$ -modules.
- (6) Determine the stalk \mathcal{G}_0 and derive the following

$$\mathrm{Hom}_{\underline{\mathbb{Z}}_{X,0}}(\mathcal{G}_0, \mathcal{G}_0) = 0.$$

- (7) Let $V \subset X$ be a non-empty open subset of X . Show that there exists a natural inclusion

$$\mathrm{Hom}_{\mathbb{Z}}(\mathbb{Z}, \mathbb{Z}) \hookrightarrow \mathrm{Hom}(\mathcal{G}|_V, \mathcal{G}|_V).$$

- (8) Show that there exists a natural inclusion

$$\mathrm{Hom}_{\mathbb{Z}}(\mathbb{Z}, \mathbb{Z}) \hookrightarrow \mathcal{H}\mathrm{om}_{\underline{\mathbb{Z}}_X}(\mathcal{G}, \mathcal{G})_0.$$

In particular, derive that the natural homomorphism

$$\mathcal{H}\mathrm{om}_{\underline{\mathbb{Z}}_X}(\mathcal{G}, \mathcal{G})_0 \rightarrow \mathrm{Hom}_{\underline{\mathbb{Z}}_{X,0}}(\mathcal{G}_0, \mathcal{G}_0)$$

is not injective.

Exercise 2 (Ideal sheaves on \mathbb{P}^n). Let $X = \mathbb{P}^n$ and $S = k[x_0, \dots, x_n]$ be the homogeneous coordinate ring of \mathbb{P}^n with $\mathfrak{m} = (x_0, \dots, x_n)$. A homogeneous ideal I in S is called *saturated* if for every element $u \in S$ such that $u\mathfrak{m} \subset I$, we have $u \in I$.

- (1) Show that for every homogeneous ideal I in S , there is a unique saturated ideal I^s in S such that $I \subset I^s$ and there is r such that $\mathfrak{m}^r \cdot I^s \subset I$.
- (2) Show that if I_1 and I_2 are homogeneous ideals in S , then $\tilde{I}_1 \cong \tilde{I}_2$ if and only if $I_1^s = I_2^s$.
- (3) In particular, given any coherent ideal sheaf on \mathcal{I} on \mathbb{P}^n , there is a unique saturated ideal I on S such that $\tilde{I} \cong \mathcal{I}$. Show that this is the unique largest homogeneous ideal I such that $\tilde{I} \cong \mathcal{I}$, and it is equal to $\Gamma_* \mathcal{I} \subset S$.
- (4) Show that if I is a homogeneous radical ideal $\neq \mathfrak{m}$, then I is saturated.

Exercise 3 (Differentials). Let k be an algebraically closed field.

- (1) Let $X := \{x^2 + y^2 = 1\} \subset k^2$. Assume that k has characteristic $\neq 2$. Prove that dx/y is defines an element in $\Gamma(X, \Omega_X)$ and then deduce that $\Gamma(X, \Omega_X) \cong \mathcal{O}_X(X)[dx/y]$.
- (2) Let $X := \{x_0^3 + x_1^3 + x_2^3 = 0\} \subset \mathbb{P}^2$ and assume that k has characteristic $\neq 3$. Prove that $\dim \Gamma(X, \Omega_X) = 1$.

- (3) Let $\Omega_{\mathbb{P}^n}^r := \wedge^r \Omega_X$. Prove that $\Gamma(\mathbb{P}^n, \Omega_{\mathbb{P}^n}^r) = 0$ for $r > 0$.

Exercise 4 (Divisible groups). An abelian group G is called *divisible* if for any $0 \neq n \in \mathbb{Z}$, the homomorphism $G \rightarrow G$ defined by $x \mapsto nx$ is surjective.

- (1) Prove that divisible groups are injective in the category of abelian groups.
- (2) Prove that \mathbb{Q}/\mathbb{Z} is divisible.
- (3) For an abelian group G , we define its dual \check{G} as $\text{Hom}_{\mathbb{Z}}(G, \mathbb{Q}/\mathbb{Z})$. Prove that there exists a natural injective homomorphism $G \rightarrow \check{\check{G}}$.
- (4) Let G be a free group. Prove that $\check{\check{G}}$ is injective.
- (5) Prove that the category of abelian groups has enough injectives.

Exercise 5 (Cohomologies of cotangent sheaves). In this exercise, we want to compute the cohomologies of the cotangent sheaves of certain nonsingular varieties.

- (1) Use the Čech cohomology to show that for a family $\{\mathcal{F}_i\}_{i \in I}$ of quasi-coherent sheaves on an algebraic variety X , we have a natural isomorphism

$$H^q(X, \bigoplus_{i \in I} \mathcal{F}_i) \cong \bigoplus_{i \in I} H^q(X, \mathcal{F}_i).$$

(Hint: use the fact that X is quasi-compact and find a suitable finite affine open covering of X .)

- (2) Now we want to compute the cohomologies of $\Omega_{\mathbb{P}^n}$ using the following Euler sequence

$$0 \rightarrow \Omega_{\mathbb{P}^n} \rightarrow \mathcal{O}_{\mathbb{P}^n}(-1)^{\oplus n+1} \rightarrow \mathcal{O}_{\mathbb{P}^n} \rightarrow 0.$$

- (a) Determine the cohomologies of $\mathcal{O}_{\mathbb{P}^n}(-1)^{\oplus n+1}$ using (1).
- (b) Determine the cohomologies of $\mathcal{O}_{\mathbb{P}^n}$.
- (c) Use the Euler sequence to derive a long exact sequence to determine the cohomologies of $\Omega_{\mathbb{P}^n}$.
- (3) Let $i : X \hookrightarrow \mathbb{P}^{n+1}$ be a nonsingular quadric hypersurface. In the following we want to compute the cohomologies of Ω_X . In the proof, you can use the following fact: let $j : Z \hookrightarrow Y$ be a closed variety in an algebraic variety Y and let \mathcal{F} be a coherent sheaf, then we have a natural isomorphism, for each $q \geq 0$,

$$H^q(Z, j^* \mathcal{F}) \cong H^q(Y, \mathcal{F} \otimes j_* \mathcal{O}_Z).$$

- (a) Show that the following sequence of coherent sheaves is exact

$$0 \rightarrow \Omega_{\mathbb{P}^n}(-2) \rightarrow \mathcal{O}_{\mathbb{P}^n}(-3)^{\oplus n+1} \rightarrow \mathcal{O}_{\mathbb{P}^n}(-2) \rightarrow 0.$$

Then use it to determine the cohomologies of $\Omega_{\mathbb{P}^n}(-2)$.

- (b) Show that the following sequence of coherent sheaves is exact

$$0 \rightarrow \Omega_{\mathbb{P}^n} \otimes \mathcal{I}_X \rightarrow \Omega_{\mathbb{P}^n} \rightarrow \Omega_{\mathbb{P}^n} \otimes i_* \mathcal{O}_X \rightarrow 0.$$

Then use it to determine the cohomologies of $i^* \Omega_{\mathbb{P}^n}$.

- (c) Use the following conormal sequence to determine the cohomologies $H^q(X, \Omega_X)$ for $q \leq n-2$

$$0 \rightarrow \mathcal{O}_X(-2) \rightarrow i^* \Omega_{\mathbb{P}^n} \rightarrow \Omega_X \rightarrow 0.$$