

Exercise sheet 4

Exercise 1 (\mathbb{Q} -Cartier divisor which is not Cartier). Let $X = \{X_1X_2 = X_3^2\} \subset \mathbb{A}_k^3 \ni (X_1, X_2, X_3)$. Let D be the prime divisor in X defined by the following equation $X_1 = X_3 = 0$.

- (1) Find the singular locus of X .
- (2) Let $U = D(X_2) \subset X$ be the standard open subset of X defined as $X_2 \neq 0$. Find the generators of the ideal of $D \cap D(X_2)$ in $\Gamma(D(X_2), \mathcal{O}_X)$.
- (3) Show that the Weil divisor $2D$ is Cartier.
- (4) Let $Y \subset \mathbb{A}_k^3 \ni (Y_1, Y_2, Y_3)$ be the variety defined by the following equation $Y_2 = Y_3^2$. Show that Y is nonsingular.
- (5) Consider the morphism $\Phi : \mathbb{A}_k^3 \rightarrow \mathbb{A}_k^3$ which sends the point (x_1, x_2, x_3) to the point (x_1, x_1x_2, x_1x_3) . Prove that the restriction $f := \Phi|_Y$ of Φ to Y is a birational morphism from Y to X .
- (6) Let $E = f^{-1}(0)$ be the preimage of the original point in Y . Show that E is a prime divisor in Y and find the generators of the ideal of E in $\Gamma(Y, \mathcal{O}_Y)$.
- (7) Show that $f|_{Y \setminus E} : Y \setminus E \rightarrow X \setminus D$ is an isomorphism.
- (8) Calculate the pull-back $f^*(2D)$ and prove that D is not Cartier.
- (9) Let $D' \subset X$ be the prime divisor in X defined by the equation $X_2 = X_3 = 0$. Show that $2D'$ is Cartier.
- (10) Calculate the pull-back $f^*(2D')$ and then prove that D' is not Cartier.
- (11) Prove that $D + D'$ is Cartier.

Exercise 2 (Class group of affine varieties). Let $X = \{X_1X_2 = X_3^2\} \subset \mathbb{A}_k^3$ be the variety as in Exercise 1 and we follow the same notations as in Exercise 1.

- (1) Show that we have $\Gamma(U, \mathcal{O}_X) = k[X_1, X_1^{-1}, X_3]$, where $U = X \setminus D$.
- (2) Show that U is a nonsingular irreducible affine variety and $\Gamma(U, \mathcal{O}_U)$ is a UFD.
- (3) Show that $\text{Cl}(X) \cong \mathbb{Z}/2\mathbb{Z}$ and D is a generator for it.
- (4) Prove that X is \mathbb{Q} -factorial.

Exercise 3 (Blowing-up points of affine spaces). For $n \geq 1$, let $X \subset \mathbb{A}_k^{n+1} \times \mathbb{P}^n(k)$ be the closed subvariety defined by the following equation

$$X_iY_j = X_jY_i, \quad 0 \leq i, j \leq n.$$

where (X_0, \dots, X_n) is the coordinate of \mathbb{A}_k^{n+1} and $[Y_0 : \dots : Y_n]$ is the homogeneous coordinate of $\mathbb{P}^n(k)$. Denote by $\pi : X \rightarrow \mathbb{A}_k^{n+1}$ the first projection. Let $0 \in \mathbb{A}_k^{n+1}$ be the original point and denote by E the preimage $\pi^{-1}(0)$.

- (1) Prove that X is irreducible and nonsingular.
- (2) Prove that $E \cong \mathbb{P}^n(k)$.
- (3) Prove that $\pi|_{X \setminus E} : X \setminus E \rightarrow \mathbb{A}_k^{n+1} \setminus \{0\}$ is an isomorphism.
- (4) For any integer $a \in \mathbb{Z}$, prove that the divisor aE is principal if and only if $a = 0$.
(Hint: otherwise, show that aE is given by $\text{div}(f \circ \pi)$, where f is a regular function on \mathbb{A}_k^{n+1} nowhere vanishing).
- (5) Determine the class group $\text{Cl}(X)$.

The morphism $\pi : X \rightarrow \mathbb{A}_k^n$ is called the *blowing-up of \mathbb{A}_k^n along 0*.

Exercise 4 (Automorphism group of projective spaces). Recall that $\mathrm{GL}(n+1, k)$ is the group of all invertible $(n+1) \times (n+1)$ -matrices over k with the operation of matrices multiplication.

- (1) Show that for every element $A \in \mathrm{GL}(n+1, k)$ induces a natural isomorphism of $\mathbb{P}^n(k)$.
- (2) Show that the kernel of the action of $\mathrm{GL}(n+1, k)$ on $\mathbb{P}^n(k)$ is the subgroup $\{cI \mid c \in k^*\}$ of central scalar matrices. Here we recall the kernel is defined to be the subset of $\mathrm{GL}(n+1, k)$ consisting of elements which act on $\mathbb{P}^n(k)$ as identity. Denote by $\mathrm{PGL}(n+1, k)$ the quotient group. We call $\mathrm{PGL}(n+1, k)$ the *projective general linear group*.
- (3) Let $g : \mathbb{P}^n(k) \rightarrow \mathbb{P}^n(k)$ be an automorphism of $\mathbb{P}^n(k)$. Show that g induces a linear isomorphism of the k -vector space $\Gamma(\mathbb{P}^n(k), \mathcal{O}_{\mathbb{P}^n(k)}(1))$.
- (4) An automorphism of $\mathbb{P}^n(k)$ is called a *projective transformation* if it is given by an element in $\mathrm{PGL}(n+1, k)$. Show that every automorphism of $\mathbb{P}^n(k)$ is a projective transformation.

Exercise 5. Let $\varphi : \mathbb{P}^n \rightarrow \mathbb{P}^N$ be the d -th Veronese embedding, given by $[x_0 : \dots : x_n] \mapsto [x^\alpha]_{\alpha \in A}$, where

$$A = \left\{ (\alpha_0, \dots, \alpha_n) \in \mathbb{Z}_{\geq 0}^{n+1} \mid \sum \alpha_i = d \right\}, \quad x^\alpha = x_0^{\alpha_0} \dots x_n^{\alpha_n}.$$

- (1) Prove that φ is injective.
- (2) Consider the ring homomorphism

$$\theta : k[(Y_\alpha)]_{\alpha \in A} \longrightarrow k[X_0, \dots, X_n]$$

defined by $\theta(Y_\alpha) = X^\alpha$. Set $I = \ker(\theta)$ and consider $V = V_p(I)$ (the Veronese variety).

Prove that I is a homogeneous ideal and $\varphi(\mathbb{P}^n) \subset V$.

- (3) Consider $\alpha, \beta, \gamma, \delta \in A$. Prove that if $\alpha + \beta = \gamma + \delta$, then $Y_\alpha Y_\beta - Y_\gamma Y_\delta \in I$.
- (4) Prove that the open subset $D^+(Y_{(i)})$ cover V , where $(i) = (\alpha_j)$ with $\alpha_j = \delta_{ij}d$.
- (5) Define $\psi : D^+(Y_{(i)}) \cap V \rightarrow D^+(X_i)$ by the formula

$$\psi((y_\alpha)) := (y_{(i,0)}, y_{(i,1)}, \dots, y_{(i)}, \dots, y_{(i,n)}),$$

where $(i, j) = (\alpha_k)$ with $\alpha_k = 0$ if $k \neq i, j$, $\alpha_i = d - 1$ and $\alpha_j = 1$.

Prove that φ and ψ are mutually inverse morphisms on the open sets in question.

- (6) Prove that φ gives an isomorphism from \mathbb{P}^n to the Veronese variety V .

Exercise 6. Let $\varphi : X \rightarrow Y$ be a morphism of varieties. Let \mathcal{F} (resp. \mathcal{G}) be a \mathcal{O}_X -module (resp. a \mathcal{O}_Y -module).

- (1) Prove that there are natural morphisms $\varphi^* \varphi_* \mathcal{F} \rightarrow \mathcal{F}$ and $\mathcal{G} \rightarrow \varphi_* \varphi^* \mathcal{G}$. Deduce the following so called adjunction formula:

$$\mathrm{Hom}_{\mathcal{O}_X}(\varphi^* \mathcal{G}, \mathcal{F}) \cong \mathrm{Hom}_{\mathcal{O}_Y}(\mathcal{G}, \varphi_* \mathcal{F}).$$

- (2) Assume that φ is a locally closed immersion.

- (a) Prove that $\varphi^* \varphi_* \mathcal{F}$.
- (b) Let \mathcal{F}' be another \mathcal{O}_X -module. Prove that

$$\mathrm{Hom}_{\mathcal{O}_Y}(\varphi_* \mathcal{F}, \varphi_* \mathcal{F}') \cong \mathrm{Hom}_{\mathcal{O}_X}(\mathcal{F}, \mathcal{F}').$$

- (c) Prove that φ_* and φ_* provide an equivalence of categories between \mathcal{O}_X -modules and \mathcal{O}_Y -modules of the form $\varphi_* \mathcal{F}$. This allows us to identify \mathcal{F} to $\varphi_* \mathcal{F}$.