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Exercise sheet 3

Throughout we denote by k an algebraically closed field.

Exercise 1 (Properties of projective varieties). (1) Prove that Pn is irreducible.
(2) Prove that a graded ring R is an integral domain if and only if for all homogeneous

elements f, g ∈ R with fg = 0 we have f = 0 or g = 0.
(3) Show that a projective variety X is irreducible if and only if its homogeneous co-

ordinate ring S(X) is an integral domain.
(4) Show by example that the homogeneous coordinate ring of a projective variety is

not invariant under isomorphisms, i.e. that there are isomorphic projective varieties
X,Y such that the rings S(X) and S(Y ) are not isomorphic.

(5) Let X ⊂ Pn be a projective variety and let S(X) be its homogeneous coordinate
ring. For any non-zero homogeneous element f ∈ S(X), prove that there exists a
canonical isomorphism

OX(D+(f)) ∼= S(X)(f).

Exercise 2 (Singular points of projective hypersurfaces). Let k be an algebraically closed
field of characteristic zero. Let Pn be the n-dimensional projective space over k. Recall that
a hypersurface of Pn is a projective subvariety of Pn defined by a non-zero homogeneous
polynomial. Moreover, given a hypersurface X in Pn, then there exists a unique reduced
polynomial F such that the homogenous ideal of X is generated by F . Then X is said to
be defined by the polynomial F .

(1) Prove that the singular points of a hypersurface X ⊂ Pn, which is defined by a homo-
geneous polynomial F (x0, · · · , xn) = 0, are determined by the system of equations

F (x0, · · · , xn) = 0 and ∂F
∂Xi

(x0, · · · , xn) = 0 for i = 0, · · · , n.
(2) Prove that we have the following equality, which is known as Euler’s Theorem.

deg(F ) · F =
n∑

i=0

Xi
∂F

∂Xi
.

(3) Determine the singular points of the Steiner surface in P3:

x21x
2
2 + x22x

2
0 + x20x

2
1 − x0x1x2x3 = 0.

(4) Prove that if a hypersurface X ⊂ Pn contains a linear subspace L of dimension
r ≥ n/2, then X is singular. (Hint: choose the coordinate system so that L is given
by xr+1 = · · · = xn = 0, write out the equation of X and look for singular points
contained in L.)

(5) Let p ∈ Pn be a point and let L1, . . . , Ln be n linear forms in k[x0, . . . , xn] such that
V (L1, . . . , Ln) = {p}. Let πp : Pn 99K Pn−1 be the rational map defined as following:

[x0 : · · · : xn] 7→ [L1(x0, . . . , xn) : · · · : Ln(x0, . . . , xn)].

Show that πp is a well-defined morphism over Pn \ {p}.
(6) Let p ∈ Pn be a point. A cone over p is the closure of the preimage π−1

p (Y ) for

a projective subvariety Y ⊂ Pn−1. Prove that a hypersurface of degree two with a
singular point is a cone. Here the degree of hypersurface is defined as the degree of
the defining polynomial. (Hint: consider the projection from a singular point).

1



2

(7) Let X be an irreducible hypersurface of degree 3. Assume that the singular locus
of X contains two distinct points p and q. Prove that the line joining p and q is
contained in X. Here a line means a projective subspace of dimension one in Pn.

Exercise 3 (Projective tangent spaces). Let X ⊂ Pn be an irreducible projective variety
and let p ∈ X be a point. Show that the following definitions of the ”projective tangent
space” of X at p are equivalent:

(1) The closure in Pn of the tangent space to the affine variety X ∩ Ui at p, where Ui is
any standard affine chart containing p.

(2) The projective linear subspace corresponding to the subspace of kn+1, which is the
kernel of the r × (n+ 1) scalar matrix

J =

(
∂Fi

∂Xj
(x0, . . . , xn)

)
,

where {F1, . . . , Fr} is a family of homogeneous generators of the homogeneous ideal
V (X) and (x0, · · · , xn) ∈ kn+1 is an arbitrary point representing p.

(3) The projective linear subspace corresponding to the linear subspace Tp̃X̃ of kn+1,

where X̃ ⊂ kn+1 is the affine cone of X and p̃ ∈ X̃ is any point representing p.

Exercise 4 (Closed points of schemes). (1) Let A be the coordinate ring of an affine
variety over an algebraically closed field. Prove that the subset of closed points in
Spec(A) is dense in Spec(A).

(2) Give an example to show that this is no longer true for general schemes.

Exercise 5 (Nilpotent elements and tangent spaces). (1) Prove that a scheme X is re-
duced if and only if there is an open cover of X by affine schemes Ui = Spec(Ri)
such that every ring Ri has no nilpotent elements, and if and only if OX,x has no
nilpotent elements for any point x ∈ X.

(2) For n ∈ Z>0, an n-fold point or fat point over k is a scheme over k of the form
Spec(R) that contains only one point, and such that R is a k-algebra of vector space
dimension n over k.
(a) Show that every double point over k is isomorphic to k[x]/⟨x2⟩.
(b) Find two non-isomorphic triple points over k and describe them geometrically?

(3) Let x be a closed point on a variety X over k, and denote by D := Spec(k[x]/⟨x2⟩)
the double point. The Zariski tangent space TX,x of X at x is defined as mx/m

2
x,

where mx is the maximal ideal of OX,x. Show that TX,x can be canonically identified
with the set of morphisms D → X that map the unique point of D to x.

Exercise 6. Let X be a variety and let {Ui}i∈I be an open covering of X. Set Uij =
Ui ∩ Uj .

(1) Let E and F be vector bundles over X with transition functions gij : Uij → GLr(k)
and hij : Uij → GLs(k). Write down the transition functions of the following vector
bundles in term of gij and hij :

E ⊗ F, Hom(E,F ), E∗, ∧kE, det(E), , SkE.

(2) Let X = Pn and let Ui = D+(xi) be the standard open subsets. Write down the
transition functions for TX and OPn(m), m ∈ Z. Deduce that KPn is isomorphic to
OPn(−n− 1).

(3) Let 0 → E′ → E → E′′ → 0 be an exact sequence of vector bundles over X. Prove
that there exists a canonical isomorphism

det(E) ∼= det(E′)⊗ det(E′′).


