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Exercise 1 (Maximal spectrum and Zariski topology). Let A be a commutative ring with
identity element 1. Let X = MaxSpec(A) be the set of all maximal ideals in A. For an
ideal a of A, we define V (a) to be the subset of X consisting of all maximal ideals of A
containing a.

(1) Show that V (0) = X and V (1) = ∅.
(2) If a and b are two ideals of A, show that

V (a ∩ b) = V (ab) = V (a) ∩ V (b).

(3) If {aii∈I} is a family of ideals in A, show that

V

(∑
i∈I

ai

)
=
⋂
i∈I

V (ai).

These properties show that all V (a) satisfy the axioms for closed subsets in a topological
space. We call it the Zariski topology on the maximal spectrum X = MaxSpec(A) of A.

Let k be an algebraically closed field and let S ⊂ An
k be an affine algebraic set. Let

I(S) be the ideal of S and denote by A the coordinate ring k[x1, . . . , xn]/I(S).

(1) (Weak Nullstellensatz) Let x ∈ S be a point and let mx ⊂ A be the ideal consisting
of elements which vanish on x. Show that mx is a maximal ideal of A and the map
Φ : S → X = MaxSpec(A) by sending x to mx is a bijection.

(2) Show that Φ is a homeomorphism with respect to the Zariski topologies on S and
X.

(3) Give an example to show that Φ is not surjective if k is not algebraically closed, e.g.
k = R.

As a consequence, all the datum (i.e. points, topology, structure sheaf) of an affine
algebraic variety X defined over an algebraically closed field k is determined by A =
OX(X), the ring of regular functions on X

Exercise 2. A ring A is said to be connected if every idempotent in A is trivial (i.e. if
every element e in A such that e2 = e is equal to 0 or 1).

(1) Prove that every integral domain is connected.
(2) If A is the direct product of two non-trivial rings, prove that A is not connected.
(3) Conversely, if A possesses a non-trivial idempotent e, prove that A ∼= A/(e)×A/(1−

e).
(4) Let V be an affine algebraic variety over an algebraically closed field k. Prove that

V is connected (in the Zariski topology) if and only if OV (V ) is connected. (Hint: If
V has two connected components, start by finding a function which is 0 on one and
1 on the other.) Is this still the case if k is not algebraically closed?

Exercise 3 (Noether’s normalization theorem). The aim of this exercise is to prove the
following result:

Theorem 0.1. Let k be a field (maybe not algebraically closed) and let A be a k-algebra of
finite type which is an integral domain. Set K = Frak(A) and n the transcendental degree
of K over k. Then there exist elements x1, . . . , xn ∈ A algebraically independent over k
such that A is integral over k[x1, . . . , xn].
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(1) Write A as a quotient lk[Y1, . . . , Ym]/I. Prove that m ≥ n and prove the theorem
when m = n.

(2) Assume m > n. Let y1, . . . , ym be the images of variables Yi in A. Prove that they
satisfy an algebraic equation F (y1, . . . , ym) = 0, where F is a non-zero polynomial
with coefficients in k.

(3) Choose positive integers r2, . . . , rm, and set

z2 = y2 − yr21 , . . . , zm = ym − yrm1 .

Prove that y1, z2, . . . , zm also satisfy a non-trivial algebraic equation with coefficients
in k. (Hint: Prove that, for large enough ri with large enough growth (i.e. 0 ≪ r2 ≪
· · · ≪ rm)), y1 is integral over the subring of A generated by the elements zi.

(4) Complete the proof the theorem by induction on m.

Exercise 4 (Basic properties of separatedness). Let Y be a separated prevariety.

(1) Any subvarieties of Y are separated.
(2) The intersection of two open affine subvarieties of Y is again an open affine subvariety.
(3) Let f : X → Y be a morphism from a prevariety X. Prove that the graph of f ,

G(f) = {(x, y) ∈ X × Y | y = f(x)} is closed in X × Y .

Exercise 5 (Basic properties of completeness). Let X be a complete algebraic variety.

(1) Let f : X → Y be a morphism to an algebraic variety. Then f(X) is complete.
(2) If Y is a complete algebraic variety. Then X × Y is again complete.
(3) If Y ⊊ X is a closed subvariety, then Y is complete.
(4) If X is affine, then dim(X) = 0. In particular, the affine space An

k is not complete if
n ≥ 1.

Exercise 6. Find the singular points of the following varieties and say whether or not
they are irreducible.

(1) In P2:

V (XY 4 + Y T 4 +XT 4), V (X2Y 3 +X2T 3 + Y 2T 3)
V (Xn + Y n + Tn), n > 0,

V ((X2 − Y T )2 + Y 3(Y − T )), V (2X4 + Y 4 − TY (3X2 + 2Y 2) + Y 2T 2),
V (Y 2T 2 + T 2X2 +X2Y 2 − 2XY T (X + Y + T )).

(2) In P3:

V (XY 2 − Z2T ), V (XY T +X3 + Y 3),
V (XY 2 − Z2T ), V (XY Z +XY T +XZT + Y ZT ),

V (XT − Y Z, Y T 2 − Z3, ZX2 − Y 3).

Exercise 7 (Dual curves). Let F (X0, X1, X2) be the equation of an irreducible curve
X ⊂ P2. Consider the rational map φ : X 99K P2 given by the formulas:

ui =
∂F

∂Xi
(x0, x1, x2), i = 0, 1, 2.

(1) Prove that φ(X) is a point if and only if X is a line.
(2) Prove that if X is a conic, then so is φ(X).
(3) Find the dual curve of X3

0 +X3
1 +X3

2 = 0.

If X is not a line, the image φ(X) is called the dual curve of X.


