

Exercise sheet 1

Exercise 1 (stalks of presheaves). Let \mathcal{F} be a presheaf of abelian groups on a topological space X and let $x \in X$ be a point.

- (1) Show that there exists a natural abelian group structure on \mathcal{F}_x such that for any open neighbourhood U of x , the restriction map $\varphi_{U,x} : \mathcal{F}(U) \rightarrow \mathcal{F}_x$ is a homomorphism of abelian groups.
- (2) Prove that $\mathcal{F}_x \cong \mathcal{F}_x^+$.

Exercise 2 (morphisms of sheaves). Let \mathcal{F} and \mathcal{G} be two presheaves of abelian groups on a topological space X and let $\varphi : \mathcal{G} \rightarrow \mathcal{F}$ be a morphism between presheaves.

- (1) Show that the germ $\varphi_x : \mathcal{G}_x \rightarrow \mathcal{F}_x$ is a well-defined homomorphism of abelian groups.
- (2) Assume furthermore that both \mathcal{F} and \mathcal{G} are sheaves. Prove that the kernel $\ker(\varphi)$ is again a sheaf.

Exercise 3 (image of sheaves). In this exercise, we construct an example $\varphi : \mathcal{G} \rightarrow \mathcal{F}$ of morphisms of sheaves such that $\text{preim}(\varphi)$ is not a sheaf.

- (1) Show that $\text{preim}(\varphi)$ is a presheaf.
- (2) Let $X = \{z \in \mathbb{C} \mid |z| = 1\} \cong S^1$. For any open subset $U \subset X$, we define

$$\begin{aligned}\mathcal{G}(U) &= \{s : U \rightarrow \mathbb{C} \mid s \text{ is continuous}\}, \\ \mathcal{F}(U) &= \{s : U \rightarrow \mathbb{C}^* \mid s \text{ is continuous}\}.\end{aligned}$$

Prove the \mathcal{G} and \mathcal{F} are sheaves on X . (Hint: the group structures on $\mathcal{F}(U)$ and $\mathcal{G}(U)$ are different!)

- (3) For any open subset $U \subset X$, we define a map $\varphi_U : \mathcal{G}(U) \rightarrow \mathcal{F}(U)$ as following:

$$\varphi_U(s) := \exp(s), \forall s \in \Gamma(U, \mathcal{G}).$$

Show that $\varphi : \mathcal{G} \rightarrow \mathcal{F}$ is a morphism of sheaves.

- (4) Let $x \in X$ be a point and let $t_x \in \mathcal{F}_x$ be a stalk. Show that there exists an element $s_x \in \mathcal{G}_x$ such that $\varphi_x(s_x) = t_x$. In particular, the morphism φ is surjective. (Hint: one may choose a small open neighbourhood U of x such that $t(U)$ is contained in a single-valued domain of $\text{In}(z)$.)
- (5) Show that the map $\mathcal{G}(X) \rightarrow \mathcal{F}(X)$ is not surjective.

This example shows why $\text{preim}(\varphi) \neq \text{im}(\varphi)$ in general: given a section $t \in \mathcal{F}(U)$, it may happen that locally at the neighbourhood of every point $x \in U$, we can find a preimage of t in \mathcal{G} . However, these local sections of \mathcal{G} can NOT be glued to be a section of $\mathcal{G}(U)$.

Exercise 4 (Skyscraper sheaf). Let X be a topological space and let A be an abelian group. Fix a point $x \in X$. For an open subset $U \subseteq X$, define

$$\mathcal{F}(U) = \begin{cases} A, & \text{if } x \in U \\ 0, & \text{if } x \notin U \end{cases}$$

- (1) Prove that \mathcal{F} is a sheaf.
- (2) Find the stalks of \mathcal{F} .

Exercise 5 (Supports of sections). Let \mathcal{F} be a sheaf on a topological space X . Let U be an open subset of X and let $s \in \mathcal{F}(U)$ be a section of \mathcal{F} over U . The *support* of s is defined as

$$\text{Supp}(s) := \{x \in U \mid s_x \neq 0\}.$$

- (1) Prove that $\text{Supp}(s)$ is a closed subset of U .
- (2) For $s, t \in \mathcal{F}(U)$, we have $\text{Supp}(s + t) \subset \text{Supp}(s) \cup \text{Supp}(t)$;
- (3) If $V \subseteq U$ is an open subset, then $\text{Supp}(s|_V) = \text{Supp}(s) \cap V$.
- (4) For a morphism $\varphi : \mathcal{F} \rightarrow \mathcal{G}$, we have $\text{Supp}(\varphi_U(s)) \subset \text{Supp}(s)$.

Exercise 6 (extending a sheaf by zero). Let U be an open subset of a topological space X , and let \mathcal{F} be a sheaf on U . Denote by $j : U \rightarrow X$ the inclusion. We define $j_! \mathcal{F}$ to be the sheaf on X associated to the presheaf $V \mapsto \mathcal{F}(V)$ if $V \subset U$, $V \mapsto 0$ otherwise. We call $j_! \mathcal{F}$ the sheaf obtained by *extending \mathcal{F} by zero* outside U .

- (1) Find the stalks of $j_! \mathcal{F}$.
- (2) Compare $j_! \mathcal{F}$ with the direct image $j_* \mathcal{F}$.
- (3) Similar to the support of a section defined in Exercise 5, we can define the support of a sheaf \mathcal{G} on a topological space X as

$$\text{Supp}(\mathcal{G}) := \{x \in X \mid \mathcal{G}_x \neq 0\}.$$

Give an example to show that the support of a sheaf may be NOT a closed subset of X .

Exercise 7 (Base change). Let $f : X \rightarrow Y$ be a continuous map between topological spaces, \mathcal{F} and \mathcal{G} are sheaves of abelian groups on Y and X , respectively.

- (1) Prove that there exists a canonical isomorphism of abelian groups

$$\text{Hom}(f^{-1} \mathcal{F}, \mathcal{G}) \cong \text{Hom}(\mathcal{F}, f_* \mathcal{G}).$$

- (2) Give canonical morphisms $\mathcal{F} \rightarrow f_* f^{-1} \mathcal{F}$ and $f^{-1} f_* \mathcal{G} \rightarrow \mathcal{G}$.
- (3) Assume that X is a closed subset of Y and f is the canonical inclusion. Prove that the morphism $f^{-1} f_* \mathcal{G} \rightarrow \mathcal{G}$ is an isomorphism and give an example to show that the morphism $\mathcal{F} \rightarrow f_* f^{-1} \mathcal{F}$ is not an isomorphism in general.