University of Chinese Academy of Sciences **Pure Mathematics**

Fall 2024 Topics in Complex Geometry II

Exercise sheet 3

Exercise 1 (Properties of Hodge *-operator). Let (V, g) be a \mathbb{R} -vector space of dimension k equipped with an inner product g. Let e_1, \ldots, e_k be an orthonormal basis of V.

- (1) Prove that the vectors $e_{i_1} \wedge \cdots \wedge e_{i_p}$ $(i_1 < \cdots < i_p)$ form an orthonormal basis of $\wedge^p V.$
- (2) Prove that the Hodge *-operator is self-ajoint up to sign: for any $v \in \wedge^p V$ and $v' \in \wedge^{k-p}V$, we have $g(v, *v') = (-1)^{p(k-p)}g(*v, v')$.
- (3) Prove that $*^2(v) = (-1)^{p(k-p)}v$ for any $v \in \wedge^p V$.
- (4) Prove that * is an isometry, i.e. g(v, v') = g(*v, *v') for any $v, v' \in \wedge^p V$.
- (5) For any $1 \le i_1 < \cdots < i_p \le k$ and $1 \le m \le n$, prove that we have

$$*(e_{i_m} \wedge *(e_{i_1} \wedge \dots \wedge e_{i_p})) = (-1)^{k(p-1)} e_m^* \lrcorner e_{i_1} \wedge \dots e_{i_p},$$

where e_m^* s are the dual basis of V^* and we define

$$e_m^* \lrcorner e_{i_1} \land \dots e_{i_p} \coloneqq \begin{cases} 0 & \text{if } m \notin \{i_1, \dots, i_p\}; \\ (-1)^{r-1} e_{i_1} \land \dots \land \widehat{e_{i_r}} \land \dots \land e_{i_p} & \text{if } m = i_r. \end{cases}$$

Exercise 2 (Standard Kähler metric). Let $X = \mathbb{C}^n$ be the *n*-dimensional complex affine space with holomorphic coordinates (z_1, \ldots, z_n) . Write $z_i = x_i + \sqrt{-1}y_i$ for any $1 \le i \le n$. Then $(x_1, y_1, \ldots, x_n, y_n)$ is the real coordinates of $\mathbb{C}^n = \mathbb{R}^{2n}$. Let $\omega := \sqrt{-1} \sum dz_i \wedge d\overline{z}_i$.

- (1) Prove that ω is the fundamental form of an inner product g on \mathbb{R}^{2n} which is com-
- patible with the natural complex structure and write down g. (2) Find an orthonormal basis of $(T_X^{1,0})^* = \Omega_X^{1,0}$ and $(T_X^{0,1})^* = \Omega_X^{0,1}$ with respect to \tilde{h} , where h is the Hermitian metric induced by g, i.e. $\tilde{h}(w, w') \coloneqq g_{\mathbb{C}}(w, \bar{w'})$.
- (3) Deduce an orthonormal basis of $\Omega_X^{p,q}$.
- (4) Let $I, J \subset \{1, \ldots, n\}$ and $1 \le k \le n$. Prove

$$*(dz_k \wedge *(dz_I \wedge d\bar{z}_J)) = \frac{\partial}{\partial \bar{z}_k} \lrcorner dz_I \wedge d\bar{z}_J \quad \text{and} \quad *(d\bar{z}_k * (dz_I \wedge d\bar{z}_J)) = \frac{\partial}{\partial z_k} \lrcorner dz_I \wedge dz_J.$$

Exercise 3 (Kähler forms and Hopf manifolds). Let (X, ω) be a compact Kähler manifold with $\dim_{\mathbb{C}} X = n$.

- (1) For any $1 \leq k \leq n$, prove that $\omega^k \in \mathcal{A}^{2k}_{\mathbb{R}}(X)$ is *d*-closed.
- (2) Prove that $*\omega$ is closed and deduce that ω is harmonic.
- (3) Prove that $[\omega^k] \in H^{2k}(X, \mathbb{R})$ is non-zero.
- (4) Deduce $h^{k,k} := \dim_{\mathbb{C}} H^{k,k}(X) > 0.$
- (5) Let λ be a complex number such that $0 < |\lambda| < 1$. Defined a group action

$$\mathbb{Z} \times (\mathbb{C}^n - \{0\}) \longrightarrow \mathbb{C}^n - \{0\}, (m, z) \longmapsto \lambda^m z.$$

Denote by H the quotient $(\mathbb{C}^n - \{0\})/\mathbb{Z}$. Show that H admits the structure of a complex manifold and is homeomorphic to $S^{2n-1} \times S^1$. (Hint: Note that $\mathbb{C}^n - \{0\}$ is diffeomorphic to $S^{2n-1} \times \mathbb{R}^+$.) This complex manifold H is called the *n*-dimensional Hopf manifold.

(6) Prove that the Hopf manifolds are not Kähler if $n \geq 2$.

Exercise 4 (Complex tori). Let $\Gamma \subset \mathbb{C}^n$ be a free abelian discrete subgroup of order 2n; in other words, Γ is freely generated by an \mathbb{R} -basis of \mathbb{C}^n such that $\Gamma \cong \mathbb{Z}^n$. Denote by X the quotient space \mathbb{C}^n/Γ .

- (1) Prove that X admits the structure of a complex manifold, called the *complex torus*.
- (2) Let q be the standard Kähler metric on \mathbb{C}^n . Show that q descends to a Hermitian metric \tilde{g} on X.
- (3) Show that \tilde{g} is Kähler.
- (4) For n = 1, prove that X is isomorphic to a Hopf manifold.

Exercise 5 (Hodge numbers of \mathbb{P}^n). We compute the Hodge numbers $h^{p,q}(\mathbb{P}^n)$ of the *n*-dimensional complex projective spaces. Denote by $[z_0 : \cdots : z_n]$ the homogeneous coordinates of \mathbb{P}^n .

- (1) Prove that \mathbb{P}^1 is homeomorphic to S^2 and deduce the cohomologies of \mathbb{P}^1 .
- (2) Let U be the open subset of \mathbb{P}^n defined by $z_0 \neq 0$. Prove that U is isomorphic to \mathbb{C}^n .
- (3) Let V be the open subset $\mathbb{P}^n \{[1:0:\dots:0]\}$. Prove that $V \cap U$ is isomorphic to $\mathbb{C}^n - \{0\}$ and is homeomorphic to $\mathbb{R}^{2n} - \{0\}$.
- (4) Deduce the cohomologies of $V \cap U$.
- (5) Define a map $G: V \times [0,1] \to V$ as

$$[z_0:z_1:\cdots:z_n]\longmapsto [tz_0:z_1:\cdots:z_n]$$

Show that the map is a well-defined continuous map.

- (6) Denote by $Z \subset V$ the closed subset defined by $z_0 = 0$. Prove that Z is isomorphic to \mathbb{P}^{n-1} .
- (7) Prove that the map G is a homotopy of the retraction of V to Z as follows:

$$V \longrightarrow Z, \quad [z_0: z_1: \dots: z_n] \longmapsto [z_1: \dots: z_n].$$

- (8) Deduce isomorphisms $H^k(V) \cong H^k(Z)$ for any k.
- (9) Recall the Mayer–Vietoris sequence in algebraic topology for singular cohomologies.
- (10) Prove that $b_k(\mathbb{P}^n) = 1$ if k is even and $b_k(\mathbb{P}^n) = 0$ if k is odd.
- (11) Apply the Hodge decomposition to show $h^{p,q}(\mathbb{P}^n) = \delta_{pq}$ for any $1 \leq p, q \leq n$.

Exercise 6 (Holomorphic forms). Let X be a compact complex manifold with $\dim_{\mathbb{C}} X =$ n. Denote by Ω_X^p the holomophic vector bundle with underlying complex vector bundle $\Omega_X^{p,0}$. If n = 2, then we call X a compact complex surface.

- (1) Let α be a holomorphic *p*-forms on X, i.e. $\alpha \in H^0(X, \Omega^p_X)$ is a holomorphic section of Ω^p_X . Prove that α is $\bar{\partial}$ -harmonic.
- (2) If X is Kähler, then any holomorphic p-form α on X is d-closed.
- (3) Let α be a holomorphic 1-form on a compact complex surface X. Prove that

$$\int_X d\alpha \wedge d\bar{\alpha} = 0.$$

- (4) Prove that any holomorphic 1-form on a compact complex surface is d-closed.
- (5) Prove that any holomorphic 2-form on a compact complex surface is d-closed.
- (6) Give an example of holomorphic forms on \mathbb{C}^n , $n \geq 2$, which is not d-closed.

Exercise 7 (Properties of Lefschetz operators). Let V be a real 2n-dimensional vector space equipped with a complex structure J. Let q be an inner product on V, which is compatible with J.

- (1) Prove that $[L^i, \Lambda](\alpha) = i(k n + i 1)L^{i-1}(\alpha)$ for any $\alpha \in \wedge^k V^*_{\mathbb{C}}$. (**Hint**: Use the relation $[L, \Lambda] = H$ and then argument by induction on *i*.)
- (2) Prove that $L^k: \wedge^{n-k} V^*_{\mathbb{C}} \to \wedge^{n+k} V^*_{\mathbb{C}}$ is an isomorphism for $k \leq n$. (3) Deduce that $L: \wedge^k V^*_{\mathbb{C}} \to \wedge^{k+2} V^*_{\mathbb{C}}$ is injective for $k \leq n$ and is surjective for $k \geq n$.
- (4) State the similar results for Λ and then prove them.
- (5) Prove that $P^{n-k} = \ker(L^{k+1})$ for $k \leq n$.