
PROJECTIVE MANIFOLDS CONTAINING AN AMPLE DIVISOR
ISOMORPHIC TO A LOCALLY RIGID FANO COMPLETE INTERSECTION

JIE LIU

ABSTRACT. In this short note, we classify the following pair (X, A): X is a pro-
jective manifold and A is an ample divisor on X such that A is isomorphic to a
smooth locally rigid Fano complete intersection in a rational homogeneous space
S of Picard number one.

1. INTRODUCTION

It is well known from adjunction theory that most projective varieties cannot
(except in trivial ways) be ample divisors and the varieties that can be ample di-
visors practically determine the varieties they are ample divisors on. In [Wat08],
Watanabe classified projective manifolds containing an ample divisor isomorphic
to a homogeneous space. In particular, the following theorem is proved.

1.1. Theorem.[Wat08, Theorem 1] Let X be a projective manifold of dimension n ≥ 3
containing an ample divisor A isomorphic to a rational homogeneous space. If ρ(A) = 1,
then the pair (X, OX(A)) is isomorphic to one of the following:
(1) (Pn, OPn(1));
(2) (Pn, OPn(2)) and n ≥ 4;
(3) (Qn, OQn(1)) and n ≥ 4;
(4) (Gr(2, 2n), O(1)) and n ≥ 2, where Gr(2, 2n) is the Grassmannian of 2-dimensional

subspaces in an 2n-dimensional vector space and O(1) is the ample generator of the
Picard group of Gr(2, 2n);

(5) (E6/P1, O(1)), where E6/P1 is the 27-dimensional rational homogeneous space of
type E6 and O(1) is the ample generator of the Picard group of E6/P1.

Recall that a projective manifold X is called locally rigid if for any smooth defor-
mation X → ∆ with X0 ≃ X, we have Xt ≃ X for t in a small (analytic) neigh-
borhood of 0. If X is a Fano manifold, by Akizuki-Nakano vanishing theorem, we
have hq(X, TX) = 0 for all q ≥ 2. Then, by Kodaira-Spencer’s deformation theory,
X is locally rigid if and only if h1(X, TX) = 0. In particular, the well known works
of Bott show that all rational homogeneous spaces are locally rigid. Moreover, re-
cently Bai, Fu and Manivel classified all locally rigid Fano complete intersection in
rational homogeneous spaces with Picard number one.

1.2. Theorem.[BFM20, Theorem 1.1] Let S be a rational homogeneous space of Picard
number one and let A ⊂ S be a smooth Fano complete intersection. Then A is locally rigid
if and only if A is isomorphic to one of the following:
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(1) Pn or Qn;
(2) a general hyperplane section of the following:

Gr(2, n)(n ≥ 5), Gr(3, 6), Gr(3, 7), Gr(3, 8), S5, S6, S7,
Grω(2, 6), Lag(3, 6), F4/P4, E6/P1, E7/P7.

(3) a general codimension 2 linear section of Gr(2, 2n + 1), n ≥ 2;
(4) a general codimension 2 or 3 linear section of S5;
(5) a general codimension 3 or 4 linear section of Gr(2, 5).

Here Gr(k, n) is the Grassmannian of k-dimensional subspaces in a vector space
of dimension n. Sn is the spinor variety, parameterizing n-dimensional isotropic
linear subspaces in an orthogonal vector space of dimension 2n. Grω(2, 6) is the
symplectic Grassmannian and Lag(3, 6) is the Lagrangian Grassmannian, which
parameterize, respectively, isotropic planes and Lagrangian subspaces in a 6-
dimensional symplectic vector space. For simple Lie group G, we denote by Pi
the maximal parabolic subgroup of G corresponding to the i-th root, where we use
Bourbaki’s enumeration of simple roots.

The main result is to classify those projective manifolds containing an ample
divisor A isomorphic to one of the Fano manifolds in Theorem 1.2 and it can be
viewed as a generalization of Theorem 1.1.

1.3. Theorem. Let X be a projective manifold of dimension (n + 1) containing a smooth
locally rigid ample divisor A with ρ(A) = 1, which is isomorphic to a Fano complete
intersection in a rational homogeneous space S of Picard number one. If n ≥ 2, then one
of the following holds.
(1) A is isomorphic to a codimension k linear section of S and X is isomorphic to a codi-

mension (k − 1) linear section of S.
(2) A is isomorphic to a quadric hypersurface and the pair (X, OX(A)) is isomorphic to

either (Pn+1, OPn+1(2)) or (Qn+1, OQn+1(1)).

Acknowledgements. I would like to thank Baohua Fu for bringing me attention to
this question and for patiently answering my numerous questions. For many use-
ful comments on the draft of this paper I would like to express my deep gratitude.
This work is supported by China Postdoctoral Science Foundation (2019M650873).

NOTATION AND CONVENTION

Throughout we work over the field of complex numbers. If E is a vector
bundle over a projective variety X, we denote by P(E ) the Grothendieck pro-
jectivization and by E ∗ the dual sheaf H omOX (E , OX). If E is the vector bundle
OP1(a0)⊕ · · ·OP1(ad) with a0 ≥ · · · ≥ ad > 0, we will denote by S(a0, · · · , ad) the
embedding of the rational normal scroll P(E ) ⊂ P∑ ai+d given by the tautological
line bundle OP(E )(1).

We denote by S a rational homogeneous space of Picard number one. In par-
ticular, the ample generator of Pic(S) will be denoted by OS(1). If A ⊂ S is a
projective subvariety, we denote by OA(1) the restriction OS(1)|A.

Throughout this paper, we say that a projective manifold A satisfies (♣) if A
satisfies the following two conditions:
• A is isomorphic to a locally rigid Fano complete intersection in a rational ho-

mogeneous space S of Picard number one
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• A is isomorphic to neither a projective space nor a smooth quadric hypersur-
face.

According to Theorem 1.2, a projective manifold A satisfies (♣) if and only if it
is isomorphic to one of the projective manifolds listed in (2)-(5) in Theorem 1.2.

2. PROJECTIVE EXTENSION

Recall that a line bundle L over a projective variety X is called simply generated
if the graded algebra

R(X, L ) :=
⊕
m=0

H0(X, L ⊗m)

is generated by H0(X, L ) as a C-algebra.

2.1. Proposition. [Liu20, Proposition 2.10 and 2.11] Let X be a normal projective
variety of dimension n ≥ 3 and let L be an ample line bundle over X. Assume that
h1(X, OX) = 0 and D ∈ |L | is a member which is irreducible and reduced as a subscheme
of X. Then the following statements hold.
(1) If L |D is simply generated, then L is very ample.
(2) Assume moreover that D is smooth, h1(D, TD ⊗ (L ∗|D)) = 0 and L |D is simply

generated. Then one of the following statements holds.
(2.1) The map Φ|L | defined by the complete linear system |L | sends X to be cone

over Φ(Y).
(2.2) The pair (D, L |D) is isomorphic to (Qn−1, OQn−1(1)), where Qn−1 is a quadric

hypersurface of dimension n − 1.

2.2. Remark. In [Liu20, Proposition 2.10 and Proposition 2.11], the results above
are stated under the hypothesis that L |D is very ample. Nevertheless, as pointed
out by Jinhyung Park, this is not correct since a very ample line bundle is not nec-
essarily simply generated. However, we note that in the proof the very ampleness
of L |D is only used to derive that L |D is simply generated.

To apply the result above to our situation, we need the following simple obser-
vation.

2.3. Lemma. Let S be a rational homogeneous space of Picard number one and let A ⊂ S
be a smooth complete intersection. Then for any positive integer k, then the ample line
bundle OA(k) is simply generated.

Proof. By [RR85, Theorem 1 (iii)], the ample line bundle OS(k) is simply generated.
Thus, to prove the lemma, it suffices to show that the natural restriction map

ρr : H0(S, OS(r)) → H0(X, OX(r)) (2.1)

is surjective for all integers r ≥ 1. Without loss of generality, we may assume that
A is a complete intersection of multi-degree (d1, . . . , dm) and denote by E → S the
rank m vector bundle

m⊕
i=1

OS(di).

Then we the following twisted Koszul complex

0 → (∧mE)⊗OS(r) → (∧m−1E)⊗OS(r) → · · · → E(r) → OS(r) → OA(r) → 0.
3



Then a standard spectral sequence argument shows that it is enough to show

Hi(S, (∧iE)⊗OS(r)) = 0

for any integer i ≥ 1. This is well-known since (∧iE)⊗ OS(r) is a direct sum of
ample line bundles and S is a rational homogeneous space of Picard number one
(see for instance [RR85, Theorem 1 (i)]). �

3. VMRT AND RATIONAL HOMOGENEOUS SPACES

3.A. Hilbert scheme of lines and VMRTs. Let X ⊂ PN be a non-degenerate pro-
jective manifold of dimension n ≥ 1. Let Lx,X denote the Hilbert scheme of lines
contained in X passing through the point x ∈ X. We define the morphism

τx : Lx,X → P(T∗
x,X) = Pn−1

which associates to each line [ℓ] ∈ Lx,X the corresponding tangent direction
through x, i.e. τx([ℓ]) = P(T∗

x,ℓ). Then τx is a closed immersion. For x ∈ X such
that Lx,X ̸= ∅, we shall always identify Lx,X with τx(Lx,X) and we shall naturally
consider Lx,X as a subscheme of Pn−1 = P(T∗

x,X). We refer the reader to [Rus12]
and the references therein for more details.

Recall that a prime Fano manifold is a Fano manifold of Picard number one so
that the ample generator of the Picard group is very ample. The following result is
certainly well known to experts. We include a proof for lack of explicit references.

3.1. Lemma. Let X be an n-dimensional prime Fano manifolds of index ≥ (n + 1)/2,
then X is ruled by lines. In particular, if X ⊂ PN is the embedding of X given by the
ample generator of Pic(X), then the Hilbert scheme of lines Lx,X ⊂ P(T∗

x,X) at a general
point x is smooth.

Proof. Let lX be the minimal anticanonical degree of a locally unsplit dominating
family of rational curves in X. Then X is ruled by lines if and only if lX equals
to the index of X. If X is of index > (n + 1)/2, the existence of lines follows
from Mori’s "bend-and-break" lemma (see [KM98, Theorem 1.10]). If X is of index
(n+ 1)/2, then X is ruled by lines unless lX ≥ n+ 1. Since X is a Fano manifold, X
is rationally connected. Thus, for a very general point x ∈ X, every rational curve
passing through x is free. In particular, every rational curve passing through x is
contained in a covering family of rational curves of X. If lX ≥ n + 1, then for every
rational curve C passing through x, we have −KX · C ≥ n + 1. As a consequence,
X is isomorphic to Pn according to [CMSB02, Corollary 0.4 (11)]. In particular, X is
of index n + 1, a contradiction. Hence, X is ruled by lines. Furthermore, for prime
Fano manifolds covered by lines, the smoothness of the Hilbert scheme of lines Lx
for a general point x follows from [Rus12, Proposition 2.1]. �

3.2. Proposition.[Rus12, Proposition 3.2] Let X′ ⊂ PN+1 be an n-dimensional irre-
ducible projective variety (n ≥ 2) which is a projective extension of the non-degenerate
projective variety X ⊂ PN . Let x ∈ X be an arbitrary point such that Lx,X ̸= ∅. Then

(1) Lx,X′ ∩ P(T∗
x,X) = Lx,X as schemes.

(2) If x ∈ X is general, then dim[ℓ](Lx,X′) = dim[ℓ](Lx,X) + 1 and [ℓ] is a smooth point
of Lx,X′ for every [ℓ] ∈ Lx,X .
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Let X be a uniruled projective manifold. We choose a family K of minimal
rational curves, i.e. an irreducible component of the space of rational curves on
X such that for a general point x ∈ X, the subscheme Kx ⊂ K parametrizing
members of K passing through x is nonempty and projective. Then the tangent
map at x is the rational map Kx 99K P(T∗

x,X) which sends a member of Kx smooth
at x to its tangent direction at x. Let Cx ⊂ P(T∗

x,X) be the strict image of the
tangent map. Then Cx is called the variety of minimal rational tangents (VMRT) of X
at x. For a general point x, we know that Kx is smooth and the tangent map is the
normalization of Cx.

In particular, if X ⊂ PN is a non-degenerate projective manifold ruled by lines,
we fix some dominant irreducible component, say K, of the Hilbert scheme of lines
of X. Then for a general point x ∈ X, we can define the VMRT Cx associated to K
so that Cx ⊆ Lx,X ⊂ Pn−1. Thus, if Lx,X is irreducible, then Cx = Lx,X and X has
only one maximal irreducible covering family of lines.

3.B. Rational homogeneous spaces and odd symplectic Grassmannians. The
knowledge of the VMRTs of rational homogeneous spaces of Picard number one is
particularly important, since rational homogeneous spaces are determined by Cx
and its embedding in P(T∗

x,X) within the class of Fano manifolds of Picard num-
ber one. In fact, in the very recent work of [HL19], it turns out that odd symplectic
Grassmannians, in the sense of [Mih07], can be also characterized via VMRTs.

Let us briefly review the basic facts of odd symplectic Grassmannians. Let V
be a complex vector space endowed with a skew-symmetric bilinear form ω with
maximal rank. We denote the variety of all k-dimensional isotropic subspaces of
V by

Grω(k, V):={W ⊂ V|dim W = k, ω|W ≡ 0}.
When dim(V) is even, say 2n, the form ω is a non-degenerate symplectic form
and this variety Grω(k, 2n) is the usual symplectic Grassmannian, which is ho-
mogeneous under the symplectic group Sp(2n). However, when dim(V) is odd,
say 2n + 1, the skew-form ω has the one-dimensional kernel ker(ω). Then variety
Grω(k, 2n + 1), called the odd symplectic Grassmannian, is not homogeneous and
has two orbits under the action of its automorphism group if 2 ≤ k ≤ n.

3.3. Theorem.[Mok08, HH08, HL19, HLT19] Let S be a rational homogeneous space
of Picard number one or an odd symplectic Grassmannian. Let X be a Fano manifold of
Picard number one with a family K of minimal rational curves. Suppose that the VMRT
Cx ⊂ P(T∗

x,X) of K at a general point x ∈ X is projectively equivalent to the VMRT
Cs ⊂ P(T∗

s,S) of S at a general point s ∈ S. Then X is isomorphic to S.

3.4. Remark. The theorem above was proved for rational homogeneous spaces
with Picard number one associated to a long root in [Mok08] and [HH08]. Very re-
cently, Hwang and Li proved it for symplectic Grassmannians and odd symplectic
Grassmannians in [HL19]. For the remaining cases, F4/P3 and F4/P4, it is proved
in the upcoming paper of Hwang-Li-Timashev [HLT19].

For the rational homogeneous spaces considered in this paper, we collect the
VMRT and its embedding in the following table and we refer the reader to [LM03]
for more details.

D node G/P dimension index VMRT embedding
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An r Gr(r, n + 1) r(n + 1− r) n + 1 Pr−1 × Pn−r O(1, 1)
Cn n Lag(n, 2n) n(n + 1)/2 n + 1 Pn−1 O(2)
Dn n Sn n(n − 1)/2 2n − 2 Gr(2, n) O(1)

F4 P4 F4/P4 15 11
smooth

hyperplane
section of S5

O(1)

E6 P1 E6/P1 16 12 S5 O(1)
E7 P7 E7/P7 27 18 E6/P1 O(1)

We also need the following description of the VMRTs of odd symplectic Grass-
mannians.

3.5. Proposition. The odd symplectic Grassmannian S:=Grω(k, 2n + 1) (2 ≤ k ≤ n)
is a Fano manifold with ρ(S) = 1 and, as sets, it is a linear section of Gr(k, 2n + 1).
Moreover, if s ∈ S is a general point, then the VMRT Cs ⊂ P(T∗

s,S) of S at s is projectively
equivalent to the following projective bundle embedded by the tautological bundle

P(OPk−1(2)⊕OPk−1(1)⊕(2n+1−2k)) ⊂ P(2n+1−2k)k+k(k+1)/2−1.

Proof. See [Mih07, Proposition 4.1 and Proposition 5.6] and [Par16, Proposition 2.1
and Lemma 3.1]. �

3.6. Remark. Let S be a rational homogeneous space of Picard number one, and
let L be the ample generator of Pic(S). Then |L | defines the unique minimal
G-equivariant embedding S ⊂ P(Vλ) corresponding to the highest weight. Then
the VMRT Co ⊂ P(T∗

s,S) of S at a referenced point s ∈ S coincides with the Hilbert
scheme of lines Ls,S ⊂ P(T∗

s,S) of S ⊂ PVλ at s (see for instance [LM03, Theorem 4.3
and 4.8]). Furthermore, the minimal rational curves of the odd symplectic Grass-
mannian Grω(k, 2n + 1) are lines of the Grassmannian Gr(k, 2n + 1) contained in
Grω(k, 2n + 1). Thus the VMRT Cs of Grω(k, 2n + 1) at a general point s also co-
incides with the Hilbert scheme of lines of Grω(k, 2n + 1) ⊂ P4n−3 at s, where the
embedding is given by the ample generator of its Picard group (see [Par16, Lemma
3.1]).

4. LOCALLY RIGID FANO MANIFOLDS AS AMPLE DIVISORS

The aim of this section is to prove Theorem 1.3. Let X be a projective manifold
of dimension n + 1 ≥ 3 containing a smooth ample divisor A which is isomorphic
to a locally rigid Fano complete intersection in a rational homogeneous space S of
Picard number one. If A is isomorphic to Pn or Qn, then such pairs (X, A) have
been already classified (see Theorem 1.1). In particular, it is easy to see that Theo-
rem 1.3 holds in these two cases. Thus, we shall make the following assumption
throughout this section:

(♣) the divisor A is not isomorphic to Pn nor Qn.

As a consequence, the rational homogeneous space S is not isomorphic to a pro-
jective space nor a quadric hypersurface (see [?, Proposition 2.13]). In particular,
thanks to Kobayashi-Ochiai’s theorem, the index r of S is at most dim(S)− 1.
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4.A. Degree of OX(A) in Pic(X). In the following proposition, we collect several
properties of locally rigid smooth Fano complete intersections in rational homo-
geneous spaces of Picard number one.

4.1. Proposition. Let S be a rational homogeneous space of Picard number one, and let
A be a smooth locally rigid Fano complete intersection in S. Denote by n the dimension
of A and by r the index of A. If A is not isomorphic to a codimension 4 linear section of
Gr(2, 5), or equivalently if ρ(A) = 1, then the following statements hold.
(1) n ≥ 3 with equality if and only if A is a codimension 3 linear section of Gr(2, 5). In

particular, the restriction map Pic(S) → Pic(A) is an isomorphism.
(2) r ≥ n/2 with equality if and only if A is a hyperplane section of Gr(3, 8).
(3) r ≥ 3 unless A is a codimension 3 linear section of Gr(2, 5).

Proof. By assumption (♣), we are in cases (2)-(5) of Theorem 1.2. Recall that the
symplectic Grassmannian Grω(k, 2n) has index 2n + 1 − k and dimension 2k(n −
k) + k(k + 1)/2. Then the result follows directly from Theorem 1.2 and the table
given in the previous section. �

4.2. Remark. If A is isomorphic to a codimension 4 linear section of Gr(2, 5), then
A is a del Pezzo surface of degree 5 and ρ(A) = 5.

The following useful lemma says that X is actually a prime Fano manifold and
OX(A) is the ample generator of Pic(X).

4.3. Proposition. Let X be a projective manifold containing a smooth locally rigid ample
divisor A with ρ(A) = 1, which is isomorphic to a codimension k Fano complete inter-
section in a rational homogeneous space S of Picard number one. Then X is a prime Fano
manifold such that Pic(X) ≃ ZOX(A).

Proof. Set n = dim(A). Then we have n ≥ 3 and the Lefschetz hyperplane theo-
rem says that the restriction map Pic(X) → Pic(A) is an isomorphism. Denote by
OX(1) the ample generator of Pic(X). Then OA(1):=OX(1)|A is the ample gener-
ator of Pic(A). By adjunction formula, it is easy to see that X is a Fano manifold
because A is a Fano manifold. In particular, we have h1(X, OX) = 0. Then, accord-
ing to Proposition ??, OX(A) is very ample. Let d be the positive integer such that
OX(A) ≃ OX(d). By assumption (♣), the pair (A, OA(d)) is not isomorphic to the
pair (Pn, OPn(1)) nor the pair (Qn, OQn(1)). As X is smooth, by Proposition ??, we
get h1(A, TA(−d)) ̸= 0.

Let r be the index of A. Thanks to Proposition 4.1, we have r ≥ n/2 with
equality if and only if A is a hyperplane section of Gr(3, 8). On the other hand, by
adjunction formula, the index of X is r + d. Under the assumption (♣), X and S
are not isomorphic to Pn+1 nor Qn+1 (see [?, Proposition 2.13]). In particular, we
have r + d ≤ dim(X)− 1 = n. It follows that d ≤ n/2 with equality only if A is a
hyperplane section of Gr(3, 8). As a consequence, we get r − d ≥ 0 with equality
only if A is a hyperplane section of Gr(3, 8).

Finally we show that h1(A, TA(−d)) ̸= 0 if and only if d = 1. Consider the
following twisted normal sequence of A in S

0 → TA(−d) → TS(−d)|A → NA/S(−d) → 0.

Then it follows that if h1(A, TA(−d)) ̸= 0, we have either h1(A, TS(−d)|A) ̸= 0 or
h0(A, NA/S(−d)) ̸= 0. In the latter case, since A is a linear section of S, we get
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d = 1. Thus it remains to consider the former case. Since A is not isomorphic to a
quadric hypersurface, by Theorem 1.2, A is always a linear section of S. Thus, by
adjunction formula and Lefschetz hyperplane theorem, the index of S is equal to
r + k. Set E = OS(−1)⊕k, where OS(1) is the ample generator of Pic(S). Then we
have the following Koszul complex

0 → ∧kE → · · · → E → OS → OA → 0.

Tensoring it with TS(−d) yields

0 → ∧kE ⊗ TS(−d) → · · · → E ⊗ TS(−d) → TS(−d) → TS(−d)|A → 0.

Then h1(A, TS(−d)|A) ̸= 0 only if there exists 0 ≤ i ≤ k such that

hn+k−i−1(S,∧iE ∗ ⊗ ΩS(−r − k + d)) = hi+1(S,∧iE ⊗ TS(−d)) ̸= 0.

If r > d or i < k, then ∧iE ∗ ⊗ OS(−r − k + d) is negative and consequently, by
Akizuki-Nakano vanishing theorem, for i > 0, we have

hi+1(S,∧iE ⊗ TS(−d)) = 0.

If r = d and i = k, then S is isomorphic to Gr(3, 8) and A is a hyperplane section.
In particular, in this case we have

hi+1(S,∧iE ⊗ TS(−d)) = h2(S, OS(−1)⊗ TS(−d)) = h2(S, ΩS).

It is well known that, for an irreducible Hermitian symmetric space S of compact
type, hi(S, ΩS) ̸= 0 if and only if i = 1. Therefore, for S ≃ Gr(3, 8) and i > 0, we
still have hi+1(S,∧iE ⊗ TS(−d)) = 0. As a consequence, if h1(S, TS(−d)|A) ̸= 0,
then we have h1(S, TS(−d)) ̸= 0, which is possible only if d = 1 because of the
assumption (♣) (see [MS99, Theorem B]). �

As an immediate application of Proposition 4.3, we prove Theorem 1.3 in sev-
eral special cases.

4.4. Theorem. Let X be a projective manifold containing a smooth locally rigid ample
divisor A with ρ(A) = 1. Suppose that A is isomorphic to a codimension k linear section
of a rational homogeneous space S which is one of the following:

Grω(2, 6), Lag(3, 6), S5, Gr(2, 5).

Then X is a locally rigid codimension (k − 1) linear section of S.

Proof. Denote by r the index of A, by n the dimension A and by d:=OA(1)n the de-
gree of A. Let us denote dX (resp. dS) of X (resp. S) the positive integer OX(A)n+1

(resp. OS(A)n+1). As ρ(A) = 1, by Proposition 4.1, we have n ≥ 3. Thus the re-
strictions Pic(X) → Pic(A) and Pic(S) → Pic(A) are both isomorphisms. Thanks
to Proposition 4.3, we obtain dX = d = dS. On the other hand, by adjunction
formula, the index of X is equal to the index r + 1.

If S is isomorphic Gr(2, 5), then A is a degree 5 del Pezzo manifold of dimension
6 − k. It follows that X is a degree 5 del Pezzo manifold of dimension 7 − k. By
the classification of del Pezzo manifolds (see [Fuj90, Chapter I, Theorem 8.11]), X
is isomorphic to a codimension (k − 1) linear section of Gr(2, 5). To see the locally
rigidity of X, note that, up to projective equivalence, there is only one class of
codimension k smooth linear section of Gr(2, 5) for 1 ≤ k ≤ 4.

If S is isomorphic to Grω(2, 6) (resp. Lag(3, 6)), then A is a hyperplane section
of S and A is a degree 14 (resp. 16) Mukai manifold of dimension 6 (resp. 5). It
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follows that X is a degree 14 (resp. 16) Mukai manifold of dimension 7 (resp. 6).
By the classification of Mukai manifolds given in [Muk89], X is isomorphic to S
and the locally rigidity of X is clear.

Suppose now that S is isomorphic to the 10-dimensional spinor variety S5. Since
the restriction map H0(S, OS(1)) → H0(A, OA(1)) is surjective, the embedding
A ⊂ P15−k given by the complete linear system |OA(1)| is projectively equivalent
to a codimension k linear section of the minimal embedding S5 ⊂ P15. Moreover,
since A is locally rigid, without loss of generality, we may assume that A is cut out
by a general codimension k linear subspaces of S5 ⊂ P15. Note that S5 ⊂ P15 is a
self-dual variety and k ≤ 3, then Proposition ?? implies that

def(A) = def(S5)− k = 4 − k.

On the other hand, consider the embedding X ⊂ PN defined by OX(A) ≃ OX(1).
Since OX(A)|A is isomorphic to OA(1) and the restriction map H0(X, OX(1)) →
H0(A, OA(1)) is surjective, we get N = 16 − k and the hyperplane section A ⊂
P15−k of X ⊂ P16−k is again projectively equivalent to the embedding of A given
by OA(1). Thus, by Proposition ??, we obtain

def(X) = def(A) + 1 = 5 − k.

It follows that dim(X) = dim(X∗) + (k − 1), where X∗ is the projective dual vari-
ety of X ⊂ P16−k. As k ≤ 3, by [Ein86, Mn97, Mn99], one checks directly that X is
isomorphic to a codimension (k − 1) linear section of S5. �
4.5. Remark. Our argument in the case S = S5 can be also applied to the case
S = Gr(2, 5) and k ≤ 2 because the Plüker embedding Gr(2, 5) ⊂ P9 is also a
self-dual variety. However, if S = Gr(2, 5) and k = 3, then we cannot apply
Proposition ?? to obtain def(X) = def(A) + 1 because we may have def(X) = 0 as
def(A) = 0.

4.6. Example. Let S5 ⊂ P15 be the 10-dimensional spinor variety, and let X ⊂ S5
be a smooth codimension 2 linear section. Recall that X is said to be special if X
contains a 4-dimensional linear space P4, or equivalently there exists a line l ⊂ X
such that

Nl/X
∼= OP1(−2)⊕OP1(1)⊕6.

According to [Kuz18, Corollary 6.9], there are exactly two isomorphism classes of
smooth codimension 2 linear section of S5, the special one and the non-special one.

Denote by G the Grassmaniann of lines Gr(P1, P̌15), where P̌15 is the dual space
of P15. Let K ∈ G be a point. Then K corresponds a codimension 2 linear subspace
LK of P15 and denote by XK the intersection X ∩ LK. Then there exists a quadratic
divisor R ∈ |OG(2)|, the spinor quadratic line complex, such that R contains a dense
Zariski open subset R0 which parametrising the smooth special codimension 2
linear section of S5.

Let A be a locally rigid codimension 3 linear section of S5. Then there exists a 2-
dimensional subspace K′ of P̌15 such that A = S5 ∩ LK′ , where LK′ is the codimen-
sion 3 linear subspace of P15 corresponding to K′. Then a codimension 2 smooth
linear section X of S5 containing A corresponds to XK, where K is a 1-dimensional
subspace of P̌15 such that K ⊂ K′. We call XK an oversetion of XK′ .

Since A is locally rigid, thus we may assume that K′ is general. In particular, the
oversections of A form a 1-dimensional family B0 in G. Moreover, as K′ is general,
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G has Picard number one and R is a divisor in G, we may assume that B0 ∩ R0 is
not empty. In particular, there exists a special smooth codimension 2 linear section
X of S5 containing A.

4.B. VMRT of hyperplanes. By Theorem 4.4, to prove Theorem 1.3, it remains
to consider the case where A is isomorphic to one of the manifolds in the cases
(2) and (3) of Theorem 1.2. In particular, A is isomorphic to either a hyperplane
section of a raiotional homogeneous space of Picard number one or a hyperplane
section of the odd symplectic Grassmannian Grω(2, 2n + 1) (n ≥ 2) and we have
a nice description of the VMRT of A.

4.7. Proposition. Let S be a rational homogeneous space of Picard number one or an
odd symplectic Grassmannian Grω(2, 2n + 1) (n ≥ 2). Let A be a locally rigid smooth
hyperplane section of S and let K be a family of minimal rational curves on A. Let A ⊂ PN

be the embedding of A given by |OS(A)|A|. Then the Hilbert scheme of lines Lo,A of
A ⊂ PN coincides with the VMRT Co of A at a general point o ∈ A. In particular, the
VMRT Co ⊂ P(T∗

o,A) is isotrivial over a Zariski open subset of A and it is projectively
equivalent to a general hyperplane section of the VMRT Cs ⊂ P(T∗

s,S) at a general point
s ∈ S.

Proof. Let S ⊂ PN+1 be the embedding of S given by |OS(A)|. Then A ⊂ PN

corresponds to a hyperplane section of S ⊂ PN+1. Let r is the index of A. By
Proposition 4.1, we have r ≥ 3. It follows that the index of S is at least 4 and
dim(Cs) ≥ 2 for a general point s ∈ S. Since S is ruled by lines and r ≥ 3, A
is thus ruled by lines. Since A is locally rigid, we can find a general hyperplane
section As passing through s such that As is isomorphic to A and s is a general
point of As because of the genericity of s. Moreover, since the Hilbert scheme of
lines Ls,S of S coincides with Cs, it follows that the Hilbert scheme of lines Ls,As is
a general hyperplane section of Cs ⊂ P(T∗

s,S) (see Proposition 3.2). In particular,
Ls,As is non-degenerate and irreducible because dim(Cs) ≥ 2. As a consequence,
Ls,As coincides with the VMRT Cs of As at s.

To see the isotriviality of Cs ⊂ P(T∗
s,A) over a Zariski open subset of A, note that

A is quasi-homogeneous if S is not isomorphic to Gr(3, 8) nor an odd symplectic
Grassmannian Grω(2, 2n + 1) (n ≥ 4) (see [?, Theorem 1.2] and [PVdV99]) and
we are done in these cases. In the remaining cases, recall that the VMRT of the
Grassmannian Gr(3, 8) is the Segre embedding P2 × P4 ⊂ P14 and the VMRT of
the odd symplectic Grassmannian Grω(2, 2n + 1) at a general point is the rational
scroll S(2, 12n−3) ⊂ P4(n−1) over P1. Then we conclude by the fact that all general
hyperplane sections of the Segre embedding of Pm ×Pn (resp. the rational normal
scroll S(2, 12n−3) ⊂ P4(n−1) for n ≥ 2) are projective equivalent. �

4.8. Remarks.
(1) In the case where A is quasi-homogeneous, one can also directly check that all

general hyperplane sections of Cs ⊂ P(T∗
s,S) are projective equivalent.

(2) We have seen above that, for a general point o ∈ A, the VMRT Co ⊂ P(T∗
o,A)

is projectively equivalent to a general hyperplane section of the VMRT Cs ⊂
P(T∗

s,S) of S at a general point s. Note that Cs ⊂ P(T∗
s,S) is an embedding of

Cs given by a complete linear system, thus the VMRT Co ⊂ P(T∗
o,A) is also an

embedding of Co given by a complete linear system.
10



(3) The general hyperplane section of the Segre embedding P1 × Pn ⊂ P2n+1 is
projective equivalent to the rational normal scroll S(2, 1n−1) ⊂ P2n. The gen-
eral hyperplane section of the rational normal scroll S(2, 1) ⊂ P4 is projective
equivalent to the twisted cubic and the general hyperplane section of the ra-
tional normal scroll S(2, 1n) ⊂ P2(n+1) (n ≥ 2) is projectively equivalent to the
rational normal scroll S(22, 1n−2) ⊂ P2n+1.

As an easy corollary of Proposition 4.3, we have the following description of
the VMRTs of X.

4.9. Proposition. Let X be a projective manifold containing a smooth locally rigid ample
divisor A, which is isomorphic to a hyperplane section of a rational homogeneous space of
Picard number one or an odd symplectic Grassmannian Grω(2, 2k + 1) (k ≥ 2). Let K
be a family of minimal rational curves on X. Denote by Cx ⊂ P(T∗

x,X) the VMRT of X
at a general point x. Then a general hyperplane section of Cx ⊂ P(T∗

x,X) is projectively
equivalent to the VMRT Co ⊂ P(T∗

o,A) at a general point o ∈ A.

Proof. According to Proposition 4.3, X is a prime Fano manifold with OX(A) the
ample generator of Pic(X). Let X ⊂ PN be the embedding given by |OX(A)|.
For a general point x ∈ X, by the locally rigidity of A, we may assume that there
exists a general hyperplane section Ax of X passing through x such that Ax is
isomorphic to A and the VMRT Cx,Ax ⊂ P(T∗

x,Ax
) is projectively equivalent to

Co ⊂ P(T∗
o,A). Let Lx be the Hilbert scheme of lines of X ⊂ PN at x. By adjunction

formula and Proposition 4.1, we have r ≥ (n + 1)/2, where r is the index of X
and n = dim(X). Then Proposition 3.1 says that the Lx is smooth. Note that the
hyperplane Ax ⊂ PN−1 is projectively equivalent to the embedding of A given
by |OA(1)| and therefore the VMRT Cx,Ax ⊂ P(T∗

x,Ax
) coincides with the Hilbert

scheme of lines of Ax ⊂ PN−1 at x. Since Ax is a general hyperplane passing
through x, by Proposition 3.2, the VMRT Cx,Ax ⊂ P(T∗

x,Ax
) is a general hyperplane

section of Lx ⊂ P(T∗
x,X). As a consequence, Lx ⊂ P(T∗

x,X) is irreducible and non-
degenerate. In particular, Lx ⊂ P(T∗

x,X) coincides with the VMRT Cx ⊂ P(T∗
x,X)

and this completes the proof. �

4.10. Remark. Recall that the VMRT Co ⊂ P(T∗
o,A) is an embedding of Co given

by a complete linear system. Then one can see that the VMRT Cx ⊂ P(T∗
x,X) is

an embedding of Cx given by the complete linear system |OCx (Co)|, where Co is
regarded as a hyperplane section of Cx ⊂ P(T∗

x,X).

4.C. End of the proof. The following result can be viewed as an analogue of The-
orem 1.3 in the case where S is isomorphic to either a product of projective spaces
or a special rational scroll over P1. The argument may be applied to a larger class
of scroll over projective spaces, but we will prove only the cases used in this paper.

4.11. Lemma. Let X be an (n + 1)-dimensional (n ≥ 2) projective manifold containing
a smooth ample divisor A such that A is isomorphic to a general smooth member in the
tautological class |OP(E )(1)| of a projective bundle P(E ), where the vector bundle E is
one of the following

OPm(1)⊕(n−m+2)(n ≥ 2m − 1 > 0), OP1(2)⊕OP1(1)⊕n(n ≥ 2).
11



If the restriction OX(A)|A is isomorphic to the restriction OP(E )(1)|A, then the polarized
pair (X, OX(A)) is isomorphic to the pair (P(E ), OP(E )(1)).

Proof. Since A is isomorphic to a general smooth member of |OP(E )(1)|, A is a pro-
jective bundle over the base Pm. Therefore, there exists a non-splitting sequence
of vector bundles

0 → OPm → E
u−→ Q → 0 (4.1)

such that A = P(Q), the inclusion A → P(E ) is induced by the quotient map u
and OP(E )(1)|A ≃ OP(Q)(1). Moreover, it is easy to see that A is not isomorphic
to the trivial product Pm × Pn−m. Thus, according to [Liu19, Theorem 1.3], there
exists an ample vector bundle Ê of rank n − m + 1 over Pm such that X = P(Ê )
and OX(A) ≃ O

P(Ê )(1), where the natural projection p : A → Pm is equal to the

restriction to A of the bundle projection π : P(Ê ) → Pm. Then the push-forward
of the following exact sequence

0 → OX → OX(A) → OX(A)|A → 0

by π gives an exact sequence

0 → OPm → Ê → Q → 0. (4.2)

If E is the vector bundle OP1(2)⊕OP1(1)⊕n, by (4.1), Ê is an ample vector bun-
dle of rank n + 1 such that det(Ê ) ≃ OP1(n + 2) and, by Grothendieck’s theorem,
Ê is splitting. As a consequence, it is easy to see that Ê is isomorphic to the vector
bundle E .

If E is the vector bundle OPm(1)⊕(n−m+1), taking the dual sequence of (4.1)
yields

0 → Q∗ → E ∗ → OPm → 0.

This yields a long exact sequence

0 → H0(Pm,OPm) → H1(Pm, Q∗) → H1(Pm, E ∗).

By Kodaira’s vanishing theorem, we have h1(OPm , E ∗) = 0. Therefore, it follows
that

H1(Pm,Q∗) ≃ H0(Pm, OPm) = C.

Thus, we have

Ext1(Q, OPm) = Ext1(OPm , Q∗) = H1(Pm, Q∗) = C.

So the non-trivial extension of Q by OPm is unique. On the other hand, since Ê is
an ample vector bundle, the exact sequence (4.2) does not split. Hence, the vector
bundle Ê is isomorphic to E .

In summary, we have always Ê ≃ E in these two cases and consequently the
polarized pair (X, OX(A)) is isomorphic to the pair (P(E ), OP(E )(1)). �

Now we are in the position to prove Theorem 1.3. Note that if G/P is isomor-
phic to either Gr(2, 2n) or E6/P1, then A is a rational homogeneous space and we
can conclude by [Wat08, Theorem 1.1]. But we will give a uniform proof by using
Theorem 3.3.
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Proof of Theorem 1.3. Firstly we remark that a general codimension 2 linear section
of Gr(2, 2n + 1) is isomorphic to a general hyperplane section of Grω(2, 2n + 1).
Thus, by Theorem 4.4, it remains to consider the case where A is isomorphic to
a general hyperplane section of one of the following: Grω(2, 2n + 1) (n ≥ 3),
Gr(2, n) (n ≥ 6), Gr(3, n) (6 ≤ n ≤ 8), Sn (6 ≤ n ≤ 7), E6/P1, E7/P1. Fix a family
K of minimal rational curves on X. Thanks to Theorem 3.3, it suffices to show that
the VMRT Cx ⊂ P(T∗

x,X) at a general point x ∈ X is projectively equivalent to the
VMRT Cs ⊂ P(T∗

s,S) at a general point s ∈ S, or equivalently it is enough to show
that the pair (Cx, OCx (1)) is equivalent to the pair (Cs, OCs(1)).

Recall that the VMRT of E7/P7 is E6/P1 with its minimal embedding, the VMRT
of E6/P1 is S5 with the minimal embedding, and the VMRT of Sn is Gr(2, n) with
the minimal embedding. Moreover, by Proposition 4.9, there exists an irreducible
smooth member in |OCx (1)|, which is isomorphic to a general member of |OCo (1)|.
As a consequence, to prove the Theorem, by induction on VMRT, it suffices to
prove it for Grω(2, 2n + 1) (n ≥ 3), Gr(2, n) (n ≥ 6) and Gr(3, n) (6 ≤ n ≤ 8).

On the other hand, note that the VMRT of Grω(2, 2n + 1) and Gr(k, n) at a gen-
eral point are projectively equivalent to the rational normal scroll S(2, 12n−3) ⊂
P4(n−1) and the Segre embedding Pk−1 × Pn−k ⊂ Pnk−k2+k−1, respectively. Then,
according to Proposition 4.9 and Lemma 4.11, we see that the VMRT Cx ⊂ P(T∗

x,X)

is projectively equivalent to the VMRT Cs ⊂ P(T∗
s,S). It follows from Theorem 3.3

that X is isomorphic to S.
Moreover, if A is not isomorphic to a quadric hypersurface and X′ is another

projective manifold containing an ample divisor A′ isomorphic to A, then X and
X′ are both isomorphic to a codimension (k − 1) locally rigid linear section of S. In
particular, X′ is isomorphic to X and one can see from Proposition 4.3 that OX(A)
and OX′(A′) are the ample generators of Pic(X) and Pic(X′), respectively. �
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